USING EXTRA DATA SEGMENTS: SAFE AND EFFICIENT

Rick Ehrhart
Hughes Aircraft Company, El Segundo
M/S 335/510
P.0. Box 92426
Los Angeles, CA 90009
(213) 648-0755

Abstract

Handling extra data segments on the HP 3000 has given rise to
numerous lectures, papers and classes. The methodology has always been
to use the data segment 'DS" intrinsics with the extra data segment
"DS" capability. The purpose of this paper is to demonstrate a new
methodology, one using the privileged "PM' capability.

Introduction

There are two types of data segments on the HP 3000; the stack and
the extra data segment. There is one and only one stack for each
process to utilize the data in a predefined structure. The extra
data segment,on the other hand, can be utilized by one or more processes
in a user defined structure. It may be used as a table or an area for
process-to-process communication.

For most applications, the 'DS'" instrinsics are quite adequate,
but when the programmer is dealing with system level processes, the over-
head of the '"DS'" intrinsics is unnecessary. This paper will show how
to use three very powerful and privileged assembly level instructions
that work on data segments: MIDS, MFDS, MDS.

Techniques

To acquire an extra data segment, the programmer still must use
the GETDSEG intrinsic. In non-privileged mode, GEIDSEG returns a
logical index; but in privileged mode, GETDSEG returns the Data Segment
Table Index or "DSTX'. This value is the unique index for the extra
data segment that the process acquires. All data segments, whether a
stack or an extra data segment, have a unique DSTX. The DSTX must be
saved for all further operations.

c-11.1



To move data into the extra data segment from the stack, the
programmer uses the ''DS" intrinsic IMOVOUT. DMOVOUT checks the
boundaries of both the stack and the extra data segment and then moves
the data out from the stack to the extra data segment. However, in
privileged mode, the programmer doesn't have to use DMOVOUT, he/she
may use the assembly instruction MIDS, Move To Data Segment. This
one instruction moves words from a DB-relative location to the extra
data segment starting at a specified offset for a count. Usage is
straightforward and simple. Example One has a procedure that shows how
to use the MIDS assembly instruction. Basicly, the following items are
pushed onto the top of the stack: target DSTX, the one returned from
GETDSEG, the target offset, the source DB-relative address, where the data
is in the stack, and a positive count of the number of words to be moved.
The one drawback is the fact that the programmer has to make sure that the
DSTX, the offset, the DB-relative address, and the count, are all valid.

To move data into the stack, the programmer used to call DMOVIN;
but now the programmer may use the second privileged assembly instruction
MFDS, Move From Data Segment. This instruction expects the following
values on the top of the stack: the target DB-relative address, the
source DSTX, the source offset in the DSTX, and a positive count. To
see how to use the MIDS instruction, please see Example Two.

The third privileged assembly instruction is MDS, Move using Data
Segments. It moves data from one data segment to another. This instruction
requires the following values on the stack: the target DSTX, the target
offset, the source DSTX, the source offset, and a positive or negative
comnt. Please see Example Three for usage.

To release the extra data segment, the programmer uses the FREEDSEG
intrinsic. The DSTX returned from GETDSEG is used as the index. The
process has to be in privileged mode to call FREEDSEG.

Conclusion

It is highly recommended that the programmer read the HP 3000
SERIES 2 MACHINE INSTRUCTION SET REFERENCE MANUAL, Part. No. 30000-90022
before attempting to use these privileged assembly instructions, since
with these instructions, the programmer has a chance to destroy the system's
integrity in one swift blow. For example, if the DSTX is invalid, the
system will come to a halt with system failure 16; or if the DSTX is
wrong, the instruction could overlay another user's stack or even a system
table.

The above techniques do cut down on overhead when working with extra
data segments. This is very useful for critical systems like a communi-
cations system, on-line monitor, or where processes have to commmicate
very quickly. These techniques have been used at Hughes Aircraft Company
quite successfully, and the benefits are well worth the dangers.

C-11.2



<<tty> EXAMPLE ONE <<rx2>>
g R Peererer g m -~ R LTy B 2
<<>> PRUCEDURE MOVE'TD'XDS(TARG:T'DSTX,1ARGET'OFFSET,SDURCE COUNT) )
VALUE TAKGET'DSTX,TARGET'OFFSET,SOURCE,COUNT}
INTEGERK TARGET'DSTX,TARGET'OFFSET, SOURCE,COUNT}
OFTION PRIVILEGED?
BEGIN
108 = TARGET'DSTXS
TDS 3= TARGETIQFFSET}
T0S 3= SODURCE}
T0S = CUUNT;
ASSEMBLE (MIDS 4)3
END; << MOVE!TO'XDS >>

<<rx3> EXAMPLE TnWwD <<xx>>
<<----------—-----—- L T e e L L LT T Ty 34
<<>> PRUCEDURE MOVE'FROM'XDS (TARGET,SOURCE'DSTX, SOURCE'OFFSET, COUNT)}
VALUE TARGET,SOURCE'DSTX,SOURCE'OFFSET,COUNT)
INTEGER TARGET,SOURCE'DSTX,SOURC:'UFFSET COUNT;
OPTION PRIVILEGED)
BEGIN
T0S = TARGET;
TOS $= SUUKCETDSTX}
108 3= SCUKRCE'OFFSET}
TOS 3= COUNT}
ASSEMBLE (MWFDS &)}
END; << MOVE'FROM'XDS >>

<<xky> EXAMPLE THREE <<ix>>

<<>> PRUCEDURE MOVE'xoo(1ARGET'szx.TAPbET'OFFs:T,SUURCt'DSTx,
SOURCE'OFFSET,COUNT)?
VALUE TARGET'DbTX.TARGET'DFFStT,SDURCE'DSTX SOURCE'OFFSET,COUNT?
INTEGER TARGET'DSTX, TARGET'UFFSET, SDURCE'DSTX.SOURCE'OFFSET;CDUNT}
OPTION PrIVILEGED}
BEGIN
TOS 2= TARGET'DSTYX}
- TUS 3= VTARLET'UFFSET}
TOS = SUURCE'DSTX;
- TOS := SOURCE'OFFSET}
TUS 3= COUNT:
ASSEMBLE (MDS 5)
END; << MOVE'XDS >>

C-1103



<<kty> EMNAMPLE ONE <CCrsd>»
LA I R R A ol Rl el Rk R e, Lladad L R X P 3
<<>> PRUCEDUKE MOVE'TD'XDS(TAKGLT'D&TX:1ARGET OFFSET,SOURCE, COUNT)}
VALUE TAkGET'DSTX,TARG:T'DFFSET,SDURCE COUNT}
INTEGEK TARGET'DSTX,TARG&T'DFFbET.SOURCE COUNT}
OFTION PRIVILEGED])
BEGIN
105 i3 TARGETIDSTX}
TOS = TARGET'VQUFFSET}
T0S ;= SOURCE}
T0S := CUUNT;
ASSEMBLE (MIDS 4);
END; << MODVE!TO!'XDS >>

<<rx3> EXAMPLE TnWD <<xx>>
e r e e r e c s am e o m o =™ r e == - = - = . =~ = e - - R )
<<>> PKRUCEDUKE MOVE'FRDM‘XDb(TARGET SOURCE'DSTX,SOUBCE'DFFSET CDUNT)}
VALUE TARGET,SOURCE'DSTX:SOURCE'OFFSET COUNT?}
INTEGER TARBET,&DURCE'DSTX;SOURC:‘DFFSET,CDUNT,
OPTIGN FRIVILEGED?
BEGIN
T0S = TARGET}
708 = SOUKCE'VDSTX}
108 = SCUKCE'UOFFSET;
TOS 3= COUNTS
ASSEMBLE (MFDS 4)}
ENDy << MOVE'FROM'XDS »>>

<<wk>»> EXAMPLE THREE <<kA>>
A N R i el L o Y, L L L L L LN X X B )
<<>> PRUCEDURE MOVE'XDo(]ARGET'DSTX:TAthT'OFFS:T SOURCE'DSTX,
SOURCE'OFFSET,COUNT)}
VALUE TARGET'D&TX,TARGET'DFFSLT,SOURCE'DSTX,SDURCE'UFFSET COUNT?
INTEGER TARGET'DSTX, TARGET'OUFFSET, SDURCE'DbTx.SDURCE'OFFSET COUNT?}
OPTION PRIVILEGED}

BEGIN
T0S := TARGET'DSTYX}

- TUS 3= YAKRGLET'UFFSET}
T0S = SOURCE'DSTX:

- TOS := SOQUKRCE'OFFSET;
TUS ;= CUUNT;

LSSEMBLE (MDS 5)}
END; << MOVE'!XDS >>

C-11.4



	Papers / Presentations
	Machine Utilization
	Using Extra Data Segments: Safe and Efficient



