
TITLE: HP 3000/0PTIMIZING ON-LINE PROGRAMS

AUTHOR: ROBERT M. GREEN
ROBELLE CONSULTING LTD.
1130-5421 10TH AVENUE
DELTA, B.C. V4M 3T9
CANADA (604)943-8021

I have identified five general principles which help in
optimizing the performance of on-line programs:

* Make each disc access count.

* Maximize the value of each terminal input.

* Minimize the run-time program size.

* Avoid constant demands for execution.

* Optimize for the common events.

FIRST PRINCIPLE: MAKE EACH DISC ACCESS COUNT

Disc accesses are the most critical resource on the HP 3000.
The sYstem is capable of performing about 30 disc transfers
per second, and theY must be shared by sYstem processes
(spooling, console operator, etc.), memory management and
user programs. (This rate can be increased to 58 per second
under the best circumstances, and can degrade to 24 per
second when randomly accessing a large file.) Another
interesting fact is that a 4096-word transfer takes about
the same overhead as a 128-word transfer. Therefore, it is
better to read 4096 words in one transfer than to read 128
words 32 times. Another point to remember is that IMAGE
database transactions reGuire a lot of immediate disc
accesses (from a DBUPDATE, which does one disc write, to a
multi-keY DBPUT that may reGuire ten or more disc
reads/writes).

OPTIMIZE

Some of the operations that consume extra disc accesses on
the HP 3000 are:

Increasing the number of keys in a detail dataset, thus
causing IMAGE to access an extra master dataset on
each DBPUT. Also, making a field a keY value means
that a DBDELETE/DBPUT is reGuired to change it <which
is 10 times slower than a DBUPDATE).

Increasing the program stack size b~ 8,000 b~tes, thus
causing the MPE memory manager to perform extra
swapping disc accesses to find room in memory for the
larger stack.

Improperly segmenting an active program, causing many
absence traps to the memor~ manaSer to brins the code
segments into main memory.

Defining a database or KSAM file with overlw large
blocksize, thus forcing each user terminal to access
a large extra data segment that must be swapped in
and out of main memory. (Note: the trade-ofts will
change when [if?] IMAGE is revised to use shared
buffers.>

NOBUF Disc Accesses

When designing your next on-line apPlication, see if there
is some way that a random disc file can be used instead of
an IMAGE dataset or a KSAM file; Then open that file with
NOBUF and access it via directed reads and writes to
specific blocks. Normally, when YOU open a file, the
program is assigned an extra data se~ment to hold the buffer
space for the file. Transfers between the file and the
program are always done through this extra data sesment.
When the program reauires a record, MPE first checks to see
if the record is already in the extra data segment buffers;
if so, it is merely transferred from the extra data segment
to the user stack. If the block containing the desired
record is not in the buffers, MPE issues a read against the
disc to bring the block into main memory.

Although this sounds very clever and efficient, it has one
major flaw: the extra data segment itself can be swapped.
This means that in order to do any file access on a busy
sYstem, it may be necessary to read the extra data seSment
into memory before accessing the data in the disc file. On
a heavily loaded sYstem, this could cause a larSe number of
unnecessary disc transfers. NOBUF access does away with all
this bY providinS a direct interface between the user
proSram and the disc files. Blocks are transferred to and
from the user stack and the disc without anw interveninS
buffer area. NOBUF is the fastest way to use random disc
storaSe from a user program.

C-03.2

OPTIMIZE

The user pro~ram must provide its own buffer space in the
stack and call for transfers of data via the block number
within the file. When multi-record access is used, it is
possible to transfer multiple blocks at a tiffie. The user is
responsible for determinin~ which block contains the record
that he desires and where within the block the record is
located. Simple subroutines can be written to handle this
transformation.

A twpical use for this kind of file is as a data entrY
transaction file. As the operator enters the data, it is
buffered in the stack until a block is full; then the entire
block is written to the disc in one operation. For even
better throuShput and response time, ~ou might trY writing
the blocks to the disc with the NO-WAIT option; when this is
used, MPE overlaps the write operation to the disc with your
next print and read from the terminal. Without NO-WAIT¥
wour pro~ram would be suspended until the disc write could
be completed bw MPE.

(Warnin~: Be certain that wou know when the end-of-file is
uPdated; otherwise, wou mi~ht find that YOU have an empty
transaction file when the swstem crashes. I suggest that
YOU move the end-of-file to the limit of the file at the
start of the day by writing a null entrY in the last record
position and then closing the file.) When the transaction
file is full (or the day ends)¥ a batch proSram is used to
put th~ transactions into the final IMAGE dataset or KSAM
file. This Job can be done in low priority or after hours.

SECOND PRINCIPLE: MAXIMIZE THE VALUE OF EACH TERMINAL READ

Each time a program reads from the terminal, it is suspended
and may be swapped out of memory. When the operator hits
the carria~e return key, the input operation is terminated,
and the process must be dispatched a~ain. In order to
dispatch a process, MPE must ensure that the data stack and
at least one code segment are resident in main memory. If
the process is ~oin~ to access the disc, it may be necessary
to make an extra data se~ment resident also. Unless the
computer has enoush main memory so that no user segments are
ever swapped out, it is desirable to have the process set as
much work done as possible before it suspends for the next
terminal input (and is swapped out a~ain).

The simplest way to program data entrY applications is by
promptin~ for and acceptin~ only one field of data at a
time. This is also the least efficient way to do it. The
user data stack must be made resident every time the user
hits 'return'. (Therefore, the less often the user hits
'return', the lar~er your stack can afford to be.) Since it
is inefficient, fast response time cannot be guaranteed, and
the resulting delays are very irritating to operators. They

OPTIMIZE

can never work UP any input speed, because theY never ~now

when the computer is ready for the next input line. If
response time and throushput are the onlY considerations, it
is alwa~s preferable to keep the operator typinS as lon~ as
possible before hittin~ the 'return' key. Multiple
transactions should be allowed per line, with suitable
separators, and multiple lines should be allowed without a
'return'.

THIRD PRINCIPLE: MINIMIZE THE RUN-TIME PROGRAM SIZE

The HP 3000 is an ideal machine for optimizin~ because of
the many hardware features available at run-time to minimize
the effective size of the pro~ram. Even Quite lar~e

application sYstems (6000 lines of code) can be or~anized to
consume only a small amount of main memory at anyone time.
Each executin~ process on the HP 3000 consists of a single
data sesment called the Dstack a

, and one or more extra data
seSments for sYstem stora~e, such as file buffers. Althoush
a process is always executing some code in a code segment,
the code does not properlw belons to the process, since one
copy is shared b~ all processes in the system. If a program
is to be executed bw several terminals, most optimizing
should be directed to the data areas (which are duplicated
for each user).

Lar~e programs which are not logically segmented make it
harder for the memory manager to do its Job, and thus cause
man~ disc accesses to be consumed in swappins. In an
extreme case, the sYstem can almost be brou~ht to a complete
standstill b~ a very large pro~ram executins on manw
terminals at the same time. The articles listed in Appendix
A provide strate~ies and examples for code segmentation. To
simplifY a complex problem, follow these suidelines: 1) put
initializatio~, termination and error handling in separate
code se~ments; 2) minimize the number of calls across
segment boundaries at run-time; 3) remain in a segment as
lon~ as possible; 4) keep segments small (2K-8K words), but
don't use too man~ segments (MPE has a limited overall code
'segment capacity).

Man~ more terminals can be supported on a ~iven sYstem if
data stack sizes are kept modest (ex: less than 6000 bytes
on a 192K-bwte machine), and if the code is properly
segmented. The simplest waw to keep the stack small is to
make all data variables local (DYNAMIC in COBOL) and to use
global storase onlw for buffers and control values that must
be accessed bw all subroutines. The reason that this is so
effective is that dwnamic local stora~e is allocated on the
top of the stack when the subroutine is entered and is
released automaticall~ when the subroutine is left. This
means that if the main program calls 3 large subroutines in
succession, thew all reuse the same space in the stack. The

OPTIMIZE

stack need onl~ be large enough for the deepest nesting
situation.

Since the amount of d~namic stack space that will be
reauired bY the pro~ram is not known at the start of
execution, the 3000 provides methods (both automatic and
pro~rammatic) to expand the d~namic area. Whenever a stack
overflow occurs, MPE automaticall~ allocates more space (up
to a MAXDATA limit). Unfortunatel~, there is no automatic
mechanism for reducing the stack size when that additional
space is no lonser needed. The user application program can
include a check in the mainline and shrink the stack back
down to the desired size after returning from an oversize
subroutine. (See Appendix B for an example.)

The other major wa~ to reduce the size of a data stack is to
ensure that constant data items <such as error messages,
screen displa~s) are stored in the code segment instead of
the data segment. Since the~ are never to be modified,
there is no logical reason that the~ must be in the data
stack. B~ moving them to the code sesment, one cop~ of them
can be shared b~ all users running the program. In SPL,
this is done by including =PB in a local arra~ declaration
or MOVE'ing a literal string into a buffer. In COBOL,
constants can be moved to the code segment b~ DISPLAY'ing
literal strinss in place of declared data items. In
FORTRAN, both FORMAT statements and DISPLAY'ed literals are
stored in the code.

FOURTH PRINCIPLE: AVOID CONSTANT DEMANDS FOR EXECUTION

The HP 3000 is a multiproSramming, virtual memor~ machine
that depends for its effectivenss on a suitable mix of
processes to execute. Although the sizes of the sesments to
be swapped have an effect on performance, this is dependent
upon the freauenc~ with which memo,\~ residenc~ is demanded.
Given the same overall confisuration and application program
sizes, the s~stem supports man~ more terminals if each one
only executes for 5 seconds ever~ 30 seconds than if each
~ne must execute for 60 seconds at a time. Each additional
terminal that is demandins continuous execution (in high
priorit~) makes it harder for the operatinS s~stem to
provide proper response time to all other terminals.

Here are some examples of the kind of operation that can
destro~ response time if performed in hish priority:

EDIT/3000, a GATHER ALL of a 3000-line source file.

QUERY, serial read of 100,000 records

SORT, sorting 50,000 records.

C-03.5

OPTIMIZE

COBOL, compilinS on 4 terminals at once.

All of these operations should be done in low priorit~ in
batch STREAM Jobs. These Jobs can even be created
d~namically bY on-line programs. In this way, the on-line
user still reQuests the high-overhead operation, but the
s~stem fulfills the reQuest when it has the time.

FIFTH PRINCIPLE: OPTIMIZE FOR THE COMMON EVENTS

In any application where there is a lar~e variation between
the minimum and maximum load that a transaction can cause,
the program should be optimized around the most common size
of transaction. In an~ application with a large number of
on-line functions, it is likely that a small number of
functions are used most of the time. In this case, all
optimization efforts should be aimed at the commonl~ used
functions and other functions left as is. This is
especiall~ feasible on the HP 3000 because of code
segmentation and dynamic stacks.

If N is the average number of records in a transaction (i.e,
the number of lines on a customer order, maximum is 500),
then allow room in your stack for N records. If YOU only
allowed for one record, then there would be unneeded disc
thrashing. Alternatively, if YOU provide room for the
maximum number, then the data stack is much larger than
actually needed most of the time. Having a larger data
stack may cause the sYstem to overload, eliminating the
benefits of keeping the records in your stack. It is
recommended that room in the stack be allowed for slightly
more than the average number, and that a NOBUF disc file be
used to ·page- this area on very large transactions.

OPTIMIZE

OPTIMIZING CASE STUDY 11: QEDIT

QEDIT is a high-speed, low-overhead source program editor
developed b~ Robelle Consulting Ltd. The primar~ objective
of QEDIT is to provide the fastest possible editing with the
minimum possible s~stem load. Other objectives include
conservation of disc space, similaritw to EDIT/3000 in
command s~ntax, abilit~ to recover the workfile following a
s~stem crash or proSram abort, and increased pro~rammer

productivit~.

QEDIT and the First Principle: Disc Accesses

In order to reduce disc accesses, QEDIT had to eliminate the
overheads of the TEXT, KEEP and GATHER ALL commands of
EDIT/3000. These three operations have the most drastic
impact upon the response time of the other users. QEDIT
attacks the problem of KEEPs b~ providing an interface
librar~ that fools the HP compilers into thinking that a
QEDIT workfile is reall~ a ·card image· file. As a result,
it is never necessar~ to KEEP a workfile before compilins
it. Since KEEPs are rarel~ used, most TEXTs are elinlinated.
TEXT is onl~ needed when ~ou want to make a backup or
duplicate cop~ of an existing file. It was anticipated that
most users would maintain their source files exclusivel~ in
workfile format, so the TEXT'ing of workfiles was optimized
(b~ usinS NOBUF, multi-record techniQues) to be at least 4
times faster than a normal TEXT of a card imaSe file. The
GATHER ALL operation is slow because it makes a cop~ of the
entire workfile in another file. QEDIT renumbers UP to 12
times faster b~ doins without the file coP~.

Disc accesses during interactive editing (add, delete,
change, etc.) were minimized b~ packing as man~ contiguous
lines as possible into each disc block. The resulting
workfile is seldom over 50~ of the size of a normal KEEP
file or 25~ of the size of an EDIT/3000 K-file (workfile).
Most DEDIT users maintain all of their source programs in
workfile form, since this saves disc space, simplifies
operations (there need onl~ be one cop~ of each version of a
source program), and provides optimum on-line performance.

QEDIT alwa~s accesses its workfile in NOBUF mode and buffers
all new lines in the stack until a block is full before
writins to the disc. Wherever possible in the codins of
QEDIT, unnecessar~ disc transfers have been eliminated. For
example, the workfile maintains onl~ forward direction
linkage pointers, which reduces the amount of disc I/O
substantiall~. Results of a loggins test show that reducins
the size of the workfile and eliminating the need for
TEXT/KEEP reduces disc accesses and CPU time b~ 70-90~.

C-03.7

DPTlriIZE

GEDIT and the Second Principle: Terminal Accesses

GEDIT allows multiple commands per line, plus multiple data
lines per data line input (i.e, YOU can enter 7 lines of
text without hittin~ 'return'). All interaction with the
terminal is done directly throu~h the READ X and PRINT
instrinsics.

GEDIT and the Third Principle: Prosram Size

GEDIT is a completely new proSram, written in hishl~

s t r u c t u red and proc e d IJ r i zed SPL.. The r e su I tin £t P T' 0 9 l'a III f:i 1e
consists of 7 code sesments of 1780 words <decimal) each.
Only two code seSments are reQuired for most editinS
commands, while the most common function <addinS new lines)
reQuires only one code sesment most of the time.

GEDIT uses a minimum data stack and no extra data segments.
All error messaSes are contained in the code, isolated in a
separate code segment that need not be resident if YOU make
no errc)rs.

QEDIT and the Fourth Principle: Constant Demands

Most GEDIT commands are so fast that the~ are over before a
s e rio IJsst r a i n has been p I a c f~don the h () s t mac h :i. rH:~ • F0 T'

example, a 2000-line source pro~ram can be searched for a
strins in four seconds. For those operations which still
are too much load, QEDIT provides the abilit~ to switch
priority subQueues dynamically. In fact, the sYstem manager
can dictate a maximum priority for certain operations such
as compiles or TEXT and KEEP commands.

QEDIT and the Fifth Principle: Common Events

The enti re desi~Jn of QEDIT is based on thE:' ObsE'l'vation that
proSram editins is not completely random. When a programmeI'
chanses line 250, he is more likely to reQuire access to
line s 245 t h r 0 IJ ~Jh 265 n (~ }.~ t t han he i r.; t () :I. :i. n e s b ? 0 t h T- 0 U ~~~ h
710. This observation dictated the design of the indexinS
scheme for the QEDIT workfile.

There are many examples of optimizins for the most common
events in GEDIT: the blocksize will hold about a screenful
of data lines, built-in compiler, fast renumberin~ command
(600 lines per second) in place of a GATHER command, faster
TEXT'ins of workfiles than KEEP files (4 to 7 times faster).

Results of Applyin~ the Principles to QEDIT

In less than 7 seconds, Q[DIT can text 1000 lines, renumber
them and search for a strins. Commands are 80% to 1200%
faster than EDIT/3000, proSram size is cut in half, and disc
I/O and CPU time are reduced by UP to 90%.

C-03.8

OPTIMIZE

In order to measure performance, an editor-callable
·procedure" was written that calculates the elapsed time
<using TIMER intrinsic> and the processor time (PROCTIME
intrinsic) between events. QEDIT measured faster than
EDIT/3000 bw these percenta~es:

Renumber
List to printer
Find string
Chan~e

Keep
Text from keepfile
Text from workfile

1204% faster
115% faster
6137. faster
645% faster

827. faster
44% faster

7337. faster

The more efficient the pro~ramming of an operation, the less
swstem resources it consumes. MPE provides a "logging"
facilitw to record the resource usa~e of programs for later
anal~sis. Both GEDIT and EDIT/3000 were used to perfor", a
typical program maintenance change (edit, compile, correct
errors). According to the logging statistics, QEDIT reduced
overhead b~ these percentages:

Physical disc transfers
Disc space reQuired
cpu time
Pro~ram size
Total data space
Data stack size

93% reduction
87% reduction
727. reduction
63% reduction
537. reduction
437. reduction

Programming of QEDIT began in March 1977 and user-site
testing in September 1977. At the present time (September
1978), there are 20 GEDIT user installations. GEDIT shows
what can be accomplished by applying all of these optimizing
principles in the design of one swstem. In anw given
application swstem, it maw not be possible to take advantage
of all five principles; but to whatever extent theY can be
applied, the resulting swstem will provide better service
than it would have.

For more information on GEDIT, contact me directl~:

Robert M. Green
Robelle Consulting Ltd.
1130-5421 10th Ave.
Delta, B. C. Canada
V4M 3T9
Phone: (604) 943-8021

C-03.9

OPTIMIZE

OPTIMIZING CASE STUDY i2: APPLYING PAYMENTS

In this accounts receivable s~stem, 24,000 invoices per
month are posted to 10,000 customer accounts. The number of
unpaid items per customer varies from one or two (a lot of
accounts) to 500 (a few major accounts). The AIR are
maintained on an open-item basis. That is, the invoices
appear on the customer's statement each month until theY are
matched UP with a payment and considered reconciled. About
200-300 cheGues are posted to the database each day. The
problem is to allow the AIR clerks to uapplym the payments
to the proper invoices in the cheapest possible manner.
Certain other constraints exist: the machine is a Series I,
onl~ dumb terminals are to be used, and the swstem is
already supportin~ about 17 terminals and seems fully
loaded.

The computer s~stem cannot tolerate the overhead to scan
down the chain of records for each account (DBGETs) and
print them on the screen. There is too heavw a load
already. In addition, the software would have to skip over
(i.e., ~et and i~nore) a lar~e number of paid invoices to
find the unpaid ones.

AIR and the First Principle: Disc Accesses

AIR uses a database to index entries by account and sort
them by date, but allows no on-line updates to the database.
They are too slow and too hard to control (recover/balance).
Updates are only allowed by seQuential batch prOSrams.

Each clerk is provided with a transaction disc file for her
DledSer·, containins copies of her active accounts (14
entries/block>. She also has a printout that shows each
account and gives its location in the file. The disc file
and associated lineprinter report are prepared in batch.
The user accesses this file in on-line mode and converts the
entries into database transactions.

The transaction file is accessed in NOBUF mode and contains
only unpaid invoices. All on-line activity is done into
this file, then, at night, those entries which have been
marked in the file for application are retrieved from the
database and UPdated.

AIR and the Second Principle: Terminal Accesses

The user input syntax allows (but does not reGuire) many
individual instructions to be entered in each input line.
This example applies a pa~ment to seven invoices and writes
a small adjustment against one invoice:

I1ABDEFGH,A(1010-1010,7.50,C)

OPTIMIZE

A major desi~n problem was how to refer to the items that
are on the customer's account •. The invoice number is too
lon~ for efficient data entr~ (and subject to errors). A
seQuence number could have been assi~ned to each entr~ on an
account. However, invoices are not paid in seQuence;
eventuall~, the seQuence numbers would be as larSe as the
invoice numbers. A Quick calculation showed that the time
reGuired to assi~n new seQuence numbers was prohibitive
(because of DB inefficiencies). The scheme settled upon
a5si~ned relative position numbers to each unpaid item on a
d~namic basis, but these numbers are not actually stored in
the database. In order to shorten input, an alphanumeric
code was used (A,B,C ••• Z,Al, •••). In retrospect, a pure
numeric seQuence number mi~ht have been better because of
the input speed of numeric keypads.

A/R and the Third Principle: Pro~ram Size

A/R is written entirely in SPL/3000. Stack sizes are modest
(2K-3K decimal or less)y and onl~ one disc block is kept in
the stack. SPL procedures were created to simulate a mini­
file s~stem for the transaction files. The procedures do
all deblockin~ and disc input/output. This simplified
codin~ of the three major proSrams.

A/R and the Fourth Principle: Constant Demands

There are a few special transactions that can take UP to a
minute, but the~ are very rare and can be iSnored. Most
transactions are ver~ short, and all data is available in
memor~, or is one disc read awa~.

A/R and the Fifth Principle: Common Events

This principle was apPlied heavil~ to AIR. The most common
event is to appl~ a pa~ment that came in ~esterda~ to an old
invoice(s). Also, most accounts have less than 10
outstandin~ items. Therefore, this sYstem anticipates the
next da~/s reQuests b~ creatin~ the batch-file/printout of
all the accounts with an unapPlied payment. For those
accounts that reGuire attention, but have no paYment, the
clerk loads them into her batch file on-line (rare). The
blocksize was picked so that most accounts could fit in one
block.

The transaction to appl~ a pa~ment is:

>10117A67/1AGH
~Invoice lines

~Pa~ment number
~Disc location of the account (from printout)

~Account number
~Prompt Character

C-03.11

OPTIMIZE

Since starting production, we have discovered that usuall~

the account i and location t entered is Just the one that
seQuentiall~ follows the last one. Thereforev the ssstem
will someda~ be chansed to allow entr~ of * for next
account.

When convertins from the manual sYstem to a pure on-line
computer s~stem, the abilit~ to write notes on the
cus tome T' I S account ca T'd was los t. Aft(·:·~ f' a f(':~l"" mc>nth~:; II t,..J(~~

found ourselves under heavy pressure to create new types of
transactions in the s~stem to handle the many special cases
that arose (paid twice, overpaid, short-paid, toc>k credit
note twice, etc.). The oriSinal desisn onl~ allowed for
fou T' t~pe5 of transact ions: i nvc> i (~(-:~ II pa~IITl(·~n t, ad";us tlllPn"l.

and J 0 urna lent r ~ (a I a T' ~i (.:~ ad jus tITle n t, ...J i t h a un i C~ u (;~ n U III b I'·:~ l"

assisned for control pl.JrpOSf:~~'). RatheI' than cll..l'ttel' I.H·'" tJ·H·?
desisn, we added the ability to write multi-line comments
for an~ Journal entry. With these comments, the AIR clerk
can now communicate directl~ with the custollier's accounts
P a ~a b 1e c I e r k toeNp I a i nthe p T' 0 b I (~m :i. n En ~.:.i 1 :i s; h • S :i. n c' (.:~ t h (.:.,
comments a re kept ina ~)eparate datasl~~t, :i ndE~~<E:'d t... ~., th(·:·~

un i Que J 0 urna len t l'~ nU ITI beT" the T' e i s n 0 (;~ d "'.i :i. t i <:> n a 1 0 'v' E' r' he a (1
on ordinar~ transactions.

Basis for future eNPansion: since most accounts pas in a
5 i IT.pIe pattel' n 51 the co ITIput co? T' wi 11 (i n bat c h) F' 1" (.:~ a p P 1 ~J thE'
pa~ments when creatins the transaction file. Then the
op €~ rat 0 r need () n], ~:I t a ke act i. <:; n :i. f the C () III P 1..1 t (o:~ '"' has s (.:~ :I. f:~ C t (.;.~ d
incoT're(.'tl~.

Results of Appl~ins the Principles to AIR

The application maintains 10,000 accounts with 2411000
invoices per month, usin~ two ADM-3 terminals on a eX-3000
with 15-19 other terminals doins less optimized ttlinss. AIR
staff has been reduced f rom seven PE.lOP Ie t.o two + At thp
same time, the three terminals used for proSram development
were switched to QEDIT. Response time has actuall~ improved
on 0 I d a P pI i. cat ions • At the s a IT, e t i ITt e 51 2 t €.q' lTd. na :I.~:; ha 'v' e
been added to the system.

For more information on this example of appl~ing optimizin~

principles, contact the user site directly:

Gar~ Nordman, Manaser of S~steffis Development
Malkin & Pinton Industrial Supplies
325 East Fifth Avenue
Vancouver, B.C. Canada
V5T lH6

C-03.12

APPENDIX A: REFERENCES ON HP 3000 OPTIMIZING

[1J Transaction Processins on the HP 3000 Series III.
Some HP field SYstem En~ineers have this
internal HP document which describes the internal
workin~s of these software products:

IMAGE
KSAM
FILE SYSTEM
COBOL
FORTRAN

[2] COMMUNICATOR No. 14.
Page 87v Block/Pase mode problems.

[3] COMMUNICATOR No. 12.
SeSmentation in COBOL

[4] COMMUNICATOR No.5.
SeSmentation for Maximum Efficiency

of System-Type ProSrams.

[5] JOURNAL-3000 Vol 1v No.6.
KSAM vs. IMAGE
HP 3000 with Front-End Processor
FORTRAN Optimization

(6] JOURNAL-3000 Vol. 1v No.5.
QEDIT, Quick ProSram Editins,

Small Appetite for Computer Time.

[7J JOURNAL-3000 VOL. 1, No.4.
Using Extra Data SeSments.
Common Prosramming Errors with IMAGE/3000.

(8J CONTRIBUTED LIBRARY, Vol 1/11.
IDEA ProSram
IDEAII Prosram
RESP Prosram
IDLE Program
PROGSTAT PROGRAM

(9] CONTRIBUTED LIBRARY, Vol III.
sao Program
DBREBILD Program

(10J CONTRIBUTED LIBRARY, ·Vol IV·.
DBSTAT Program
DBCHANGE Program

C-03.13

OPTIMIZE

Cl1] SCRUG MEETING LIBRARY, March 1978.
FASTER - An essa~ on writins proSrams for

~reater efficienc~.

OVERLORD (See also SOD.)
DBSTAT - Internal efficiency of master

datasets.
SHOWVM - Shows virtual memroy.
STACKOPT - Stack optimizing routines.

[12J SCRUG MEETING NOTESv March 1978.
Extra Data SeSments and Process Handlin~

Operator Utilities

[13J INTERNATIONAL USERS MEETING, 1977.
KSAM (see extra data segment size, load times)
IMAGE for the advanced User
Optimizin~ FORTRAN IV/3000
RPG/3000 ProSrammins Optimization
Data Entry Techniaues'
Se~mentation

MPE II Measurement and Optimization
MPE C Measurement and Optimization

[14] INTERNATIONAL USERS MEETING, February 1975.
Software Optimization Throu~h Sesmentation

[15] INTERNATIONAL USERS MEETING, Ma~ 1974.
ProSram Performance

[16] CCRUG MEETING MINUTES, May 9, 1978.
IDEA Pro~ram

DBDRIVER Pro~ram

[17] PERFORMANCE GUIDELINES/SERIES III (HP 5953-0533).
Note the extra load of synchronous terminals(p.9)
and the dramatic increase in the number of
terminals supported when a simple file is used
instead of IMAGE/DEL/COBOL.

[18] SPL/3000 FOR COMMERCIAL APPLICATIONS,
EFFICIENCY WITH EASE OF MAINTENANCE.

Report available from Robelle Consulting Ltd.

C-03.14

OPTIMIZE

OPTIMIZE

APPENDIX B: SHRINKING THE STACK SIZE

The following SPL code can be added to an~ program
that calls a lot of procedures (or subproSrams in COBOL)
in order to d~namicall~ optimize the size of the data
stack.

CHECKSTACK LIBRARY SUBROUTINES

1.Checks for excessive d~namic stack space after
subroutine calls and adjusts the stack size; consists
of three routines that are intended to be called
from the mainline of an application proSram that
uses man~ subprograms with var~inS data reGuirements.

2.Contents: CHECKSTACK1, CHECKSTACK2, CHECKSTACK3.

3.Parameters: WORKSPACE, 20 b~tes of global data in the
calling program. The proper COBOL definition is:

01 CHECK-STACK-SPACE •
05 PRINT-RESULTS-FLAG PIC S9(3) COMP VALUE N.

* N=O(NO PRINTOUT),1(ON TERMINAL),
* 2(ON CONSOLE),3(ON BOTH).

05 FILLER PIC X(18).

HOW TO USE CHECKSTAK:

1. Add the WORKSPACE to the data division of ~our program
and set the desired PRINT/FLAG value(see step 4).

2. At the start of proSram execution:

CALL ·CHECKSTACK1· USING CHECK-STACK-SPACE.

This call should occur once at the start of the
mainline. The purpose is to record the size of
the d~namic stack area before an~ subprograms are
called. This size is determined b~ STACK=XXXX in the
:PREP or :RUN commands.

3. After returning from each subprogram call:

CALL ·CHECKSTACK2 D USING CHECK-STACK-SPACE.

This call compares the current d~namic stack area
with the initial size and if it is over 512 words
larger (1024 b~tes), reduces it back to the initial.

C-03.15

OPTIMIZE

4. At the end of pro~ram execution:

CALL ·CHECKSTACK3- USING CHECK-SlACK-SPACE.

This call prints statistics on stack usa~e on
either $STDLIST or the console or both. Format is:

GLOB99 STK99 iOK99 AVG99 tADJ99 SIZ99

~ Global stack size in decimal words
~ Initial d~namic stack size

~ Number of ·OK- subpro~ram calls
Avera~e stack size per -OK- call~

Number of times stack was adjusted ~

Avera~e stack size per adjusted call ~

Start with the default value for STACK= (about 800)
and a lar~e value for MAXDATA (20000). If all of the
subpro~ram calls are adjusted (i.e., OK=O), increase the
STACK= value. Tr~ to find a value where most of the
subprosram calls execute without havinS to shrink the
stack afterwards, but not so larse that there are no larse
subprosrams left ot adjust.

INSTALLATION OF CHECKSTAK:

1. T~pe the followin~ SPL source code into the
s~stem usin~ GEDIT or EDIT/3000 and
create a source file.

2. Compile the source file and make corrections
until there are no errors:

:SPL SOURCE

3. When ~ou have a successful compile, save the
USL file, usins this command:

:SAVE $OLDPASS,USLSPL

4. Either COpy the segment called -LIBSEG1- into
the USL file of ~our application proSram
(usin~ the :SEGMENTER commands AUXUSL and COpy)
or add it to an SL <:SEGMENTER or :SYSDUMP).

$CONTROL LIST,SUBPROGRAM,MAIN=LIBSEG1,ERRORS=9
BEGIN

OPTIMIZE

PROCEDURE CHECKSTACKI (BUF) ;
INTEGER ARRAY aUF;

BEGIN
« DEFINE STRUCTURE/USE OF BUF »
DOUBLE ARRAY DBUF <*) = aUF;
DEFINE

PRINT/FLAG = BUFi ,INITIAL/SPACE
,SHRINK/COUNT = BUF(2)i ,OK/COUNT
,OK/SPACE = DBUF(2)i ,SHRINK/SPACE
;

INTEGER Z,Q;

IF NOT (O<=PRINT/FLAG<=3) THEN
PRINT/FLAG := 1; «DEF»

PUSH (Z,Q); Z:=TOS; O:=TOS;

INITIAL/SPACE := Z - a;
BUF (2) : = 0;
MOVE BUF(3) := BUF(2),(7);

END; «CHECKSTACKI »

PROCEDURE CHECKSTACK2 (BUF) ;
INTEGER ARRAY BUF;

BEGIN
« DEFINE STRUCTURE/USE OF BUF »
DOUBLE ARRAY DBUF <*) = aUF;
DEFINE

PRINT/FLAG = BUF. ,INITIAL/SPACE
,SHRINK'COUNT = BUF(2)t ,OK/COUNT
,OK/SPACE = DBUF(2)t ,SHRINK/SPACE
;

INTEGER Z, Q, STACKSIZE;
INTRINSIC ZSIZE;

= BUF(1)i
= BUF(3)i
= DBUF(3):IJ:

= BUF(1)t
= BUF(3)i
= DBUF(3)t

PUSH (Z,Q); Z:=TOS; Q:=TOS;
STACKSIZE := Z - Q;
IF STACKSIZE > (INITIAL/SPACE + 512) THEN BEGIN

ZSIZE (Q +INITIAL'SPACE);
SHRINK/COUNT := SHRINK'COUNT + 1;
SHRINK'SPACE := SHRINK/SPACE + DOUBLE<STACKSIZE);
END

ELSE BEGIN
OK'COUNT := OK/COUNT + 1;
OK'SPACE := OK'SPACE + DOUBLE(STACKSIZE);
END;

END; «CHECKSTACK2»

C-9}3.17

PROCEDURE CHECKSTACK3 (aUF) ;
INTEGER ARRAY BUF;

BEGIN
« DEFINE STRUCTURE/USE OF BUF »
DOUBLE ARRAY DBUF C*) = aUF;
DEFINE

PRINT/FLAG = BUFi ,INITIAL/SPACE
,SHRINK/COUNT = BUF(2)i ,OK'COUNT
,OK'SPACE = DBUF(2)i ,SHRINK'SPACE

= BUF(1)i
= BUF(3).
= DBUF(3)i

OPTIMIZE

V
INTEGER ARRAY P(O:38);
BYTE ARRAY P'(*)=P;
INTEGER TERMINAL;
INTEGER GLOBAL'SPACE;
INTRINSIC PRINT,PRINTOP, ASCII,DASCII,WHO,DATELINE;

IF PRINT'FLAG = 0 THEN RETURN;

IF PRINT'FLAG=2 OR PRINT'FLAG=3 THEN BEGIN
« PRINT IDENTIFYING MESSAGE ON THE CONSOLE »
p:=n u; MOVE P(1):=P,C38);
MOVE P :="CHECK-STACK: D;
WHOC"?P'(12),P'C21),P'C30),,TERMINAL);
MOVE P/(39) := nON°;
ASCII(TERMINAL,10,P'(42»;
P'(20):=P'C29):=".n;
PRINTOP(P,-46,O);
END;

P:=" "; MOVE P(1):=P,(38);
MOVE P:=uGLOB n ;

PUSH (Q);
GLOBAL'SPACE := TOS;
ASCII(GLOBAL'SPACE,10,P'(4»;
MOVE P'(10):=nSTKD;
ASCII(INITIAL'SPACE,10,P'(13»;
MOVE P'(19):=DiOKD;
ASCII(OK'COUNT,10,P'(22»;
MOVE P'(28):=IAVG P ;

DASCII(OK'SPACE/DOUBLE(OK'COUNT),10,P'(31»;
MOVE P'(37):=DiADJ a

;

ASCII(SHRINK'COUNT,10,P'(41»;
MOVE P'(47):=DSIZB;
DASCII(SHRINK'SPACE/DOUBLE(SHRINK'COUNT),10,P'(50»;

IF PRINT'FLAG=2 OR PRINT'FLAG=3 THEN
PRINTOP(P,-56,O);

IF PRINT'FLAG=1 OR PRINT'FLAG=3 THEN
PRINT(P,-56,O);

END; « CHECKSTACK3 »
END «LIBRARY» •

C-03.18

	Papers / Presentations
	Machine Utilization
	HP 3000/Optimizing On-line Programs

