TITLES HF 3000/0FTIMIZING ON-LINE FROGRAMS

AUTHOR?: RORERT M. GREEN
ROEBELLE CONSULTING LTI
#130~-5421 10TH AVENUE
DELTAy B.C. VAM 3T9
CANADIA (604)943-8021

T have identified five derneral rrincirles which helr in
ortimizing the rerformance of orn~line rrograms:

¥ Make each disc access count.

X MaMimize the value of each terminal ineutb,
X Minimize the run—time rrodram size.

X Avoid comstant demands for execution.

¥ Drtimize for the common events.

FIRST FRINCIFLE! MARKE EACH DISC ACCESS COUNT

[lisc accesses are the most critical resource on the HF 3000.
The sustem is carable of rerforming about 30 disc transfers
rer secondy and thew must be shared by sustem rrocesses
(sroolings console oreratory etcs)y memorw management and
user srograms. (This rate can be increased to 58 rer second
under the best circumstancesy and can dedrade to 24 rer
second whern randomly accessing a lardge file.) Another
interesting fact is that 3 40946-word transfer takes about
the same overhead as a 128-word transfer. Therefores it is
better to read 4096 words in one transfer than to read 128
words 32 times. Another roint to remember is that IMAGE
databasse transactions recuire a lot of immediate disc
accesses (from a DRUFDATE, which does ome disc writes to a3
multi~kew DEFUT that maw recuire ten or more disc
reads/writes).

C-93.1

OFTIMIZE

Some of the orerations that consume emtra disc accesses on
the HF 3000 are!

Increasing the number of keds in 2 detsil datssets thus
causing IMAGE to asccess an extra master dataset on
each DEFUT. Alsos making a3 field a kew value means
that a DROELETE/DEFUT is reauired to chansge it (which
is 10 times slower tham a DRUFDATE).

Increasing the rrodgram stack size bu 8y000 butesy thus
causing the MPE memorw mansger to rerform extra
swarring disc accesses to find room in memorws for the
larger stack.

Improrerly segmenting an sctive rrodgrams causing many
absence trars to the memory manssger to bring the code
sedgments into main memory.

Defining a3 database or KSAM file with overly large
blocksizes thus forcinmg each user terminal to asccess
8 larde extra dats sedgment that must bhe swarred in
and out of main memorw. (Note! the trade-offs will
change wher Lif?] IMAGE is revised to use shared
buffers.)

NORUF Disc Accesses

When designing sour nesxt on—-line arrlicationy see if there
is some waw that a random disc file can e used instead of
an IMAGE dataset or a KSAM files Then oren that file with
NOEBUF and access it via directed reads and writes to
srecific blocks. Normallss whern You oren a filer the
Frodram is assisned an extra dats sedment to hold the buffer
srace for the file. Transfers between the file and the
Frodram are alwavs done through this extra data segment.,
Wheri the rrodgram recuires a records MFE first checks to see
if the record is already in the extra data sesgment buffers)
if soy it is merely transferred from the extrs data sedgment
to the user stack. If the block containing the desired
record is not in the buffersy MFE issues a read adgainst the
disc to bring the block into mairn Mmemory.

Although this sounds verw clever and efficienty it has ore
maJjor flaw?! the extra datas segment itself can be swarred,
This means that in order to do anu file access om a8 busy
sustemy it may be necessary to read the extra dats sedment
into memorw before accessing the data in the disec file. On
a8 heavily loaded swustems this could cause a8 larde number of
unnecessary disc transfers., NORBUF access does away with all
this by rroviding 3 direct interface betweer the user
Frogdram and the dise files. Elocks are transferred to and
from the user stack and the disc without any intervening
buffer area. NOBUF is the fastest waw to use random disc
storade from a user srosgram.

C-23.2

OFTIMIZE

The user rrogram must rrovide its own buffer srace in the
stack and call for transfers of data via the bhlock number
within the file., When multi-record access is usedy it is
rossinle to transfer multirle blocks at a8 time. The user is
resronsible for determining which block contains the record
that he desires and where within the block the record is
located.,. Simrle subroutines can be written to handle this
transformation.

A turical use for this kind of file is as a8 data entry
transaction file, As the orerator enters the datay it is
buffered in the stack until 3 block is fullé then the entire
block is written to the disc in one oreration. For even
better throudghrut and resronse timey wou might try writing
the blocks to the disc with the NO-WAIT ortiony when this is
usedy MFE overlass the write oreration to the disc with wour
rnext erint and read from the terminal, Without NO-WAITy
wour srogram would be susrended until the disc write could
be comrleted bw MPE.

(Warning! BRe certain that wou krow when the end-of-file is
urdateds; otherwises wou might find that wou have an emsty
transaction file when the system crashes. I sugdgest that
wou move the end-of-file to the limit of the file at the
start of the dawy bw writing a8 rnull entrwy in the last record
rosition and then closing the file.) When the transaction
file is full (or the day ends)y a batch rrodram is used to
rut the transactions into the fimal IMAGE dataset or KSAM
file. This Job can be dome in low eriority or after hours,

SECOND FRINCIFLES: MAXIMIZE THE VALUE OF EACH TERMINAL REAN

Each time a srodgram reads from the terminaly it is susrended
and may be swarred out of memorw. When the orerator hits
the carriade return kedy the inerut oreration is terminatedy
and the srocess must be disratched adgain. In order to
disrateh 8 rrocessy MPE must ensure that the dats stack and
at least one code sedment are resident in main memorwg. If
the rrocess is doing to access the discy it maw be necessanry
to make an extra datz sedgmernt resident slso. Unless the
comruter has emnouwgh main memorw so that no user sedments are
ever swarred outy it is desirable to have the rrocess dget as
much work dorne as rossible before it susrends for the next
terminal inrut (arnd is swarred out adain).

The simelest waw to srodgram dats entry aerlications is b
crrometing for and accerting onlwy one field of dats at 8
time. This is also the least efficient waw to do it. The
user data stack must be made resident everw time the user
hits ‘return’. (Thereforeys the less often the user hits
‘return’y the larder wour stack can afford to be.) Since it
is inefficienty fast resronse time cannot be duaranteedy and
the resulting delaus are verws irritating to orerators. Theu

C-93.3

OFTIMIZE

can never work us ang inrut sreedy because thew never know
when the comruter is readwy for the mext ineut line. If
resronse time and throudghsut are the only considerationss it
is a3lwaus rreferable to keer the orerator turing as long as
rossible before hitting the ‘return’ kew, Multirele
transactions should be allowed rer limer with suitable
seraratorsy and multirle lines shouled be allowed without a
‘return’.

THIRD FRINCIFLE?: MINIMIZE THE RUN-TIME FROGRAM SIZE

The HF 3000 is an ideal machirne for ortimizing because of
the many hardware features available at run-time to mimimize
the effective size of the srodgram. Even auite lardge
armlication sustems (4000 lines of code) can be ordgsnized to
consume only a3 small amount of main memory at any one time.
Each executing rrocess on the HF 3000 comnsists of a3 sindle
data sedment called the "stack”y and one or more extra data
segments for sustem storadger such as file buffers. Althoush
8 rrocess is alwauws executing some code inm a8 code segmenty
the code does not mrorerly belong to the rrocessy since one
cory is shared by all rrocesses in the sustem. If 2 errogram
is to be executed by seversl terminalss most ortimizing
should be directed to the data areas (which are durlicated
for each user).

Larde rrodrams which are rnot logically segmented make it
harder for the memorw manager to do its Joby and thus cause
many disc accesses to be consumed in swarring, In an
extreme casey the sustem can almost be brousght to a comrlete
standstill by a very larde srodram executing om many
terminals at the same time. The asrticles listed in Arpendis
A rrovide stratedies and exameles for code segmentatiorn. To
simrlify a comelex rroblemy follow these sguidelinest 1) eut
initislizationy termination and error handling in serarate
code sedmentsé 2) minimize the rumber of calls across
segment boundaries at run-time’ 3) remain in a sedment a3s
long as rossible’ 4) keer sedments small (2K-8K words)s but
don‘t use too many sedgmerts (MFE has a limited overall code
sedment caracity).

Many more terminals can be susrorted om a givenrn system if
data stack sizes are kert modest (ex! less thanm 4000 hutes
on a8 192K-buyte machirne)y and if the code is rrorerlu
segmented, The simrlest waw to keer the stack small is to
make a3ll dats variables local (DYNAMIC inm COROL) and to use
global storade onlwy for buffers and control values that must
be accessed by a3ll subroutines. The reason that this is so
effective is that dunamic local storade is allocated on the
tor of the stack when the subroutine is entered and is
released automatically when the subroutine is left. This
means that if the main rrodgram calls 3 larde subroutines in
successiony thew all reuse the same srace in the stack. The

C-93.4

OFTIMIZE

stack need only be large enoudh for the deerest nesting
gsituation.

Since the amount of dunamic stack srace that will be
reauired by the rrodgram is not known at the start of
executionr the 3000 rrovides methods (both sutomatic and
srogrammatic) to exrand the durnamic area. Whenever a stachk
overflow occursy MFE automaticallwy allocstes more srace (ur
to 3 MAXDATA limit), Unfortunatelyy there is no automatic
mechanism for reducimg the stack size when that additionsl
srace is no longer needed. The user arrlication rrodram can
include a check in the maimline and shrimk the stack bach
down to the desired size after returning from an oversize
subroutine. (See Arrendix B for an examsle.)

The other madJor way to reduce the size of a8 data stack is to
ensure that constant dats items (such as error messagesy
screen disrlavs) are stored in the code sedment instead of
the data segment. Since thew are mever to be modifiedy
there is no logical reason that thew must be in the data
stack. By moving them to the code segments one cory of them
can be shared bw all users running the rrodgram. In SPLy
this is dome by including =PE in a local arraw declaration
or MOVE’ing a literal string into 8 buffer. In COROLy
constants can be moved to the code sedment by DISFLAY ing
literal strings in rlace of declared dats items. In
FORTRANy both FORMAT statements and DISFLAY ed literals are
stored in the code.

FOURTH FRINCIFLE: AVOID CONSTANT DEMANDS FOR EXECUTION

The HF 3000 is @ multirrodgrammingy virtusl memors machine
that derends for its effectivenss on & suitable mix of
rrocesses to execute. Althoush the sizes of the sedments to
be swarred have an effect on rerformancer this is derendent
uron the freauency with which memorw residency is demanded.
Given the same overall configuration and asrlication rrodram
sizessy the swustem surrorts many more terminals if esch one
only executes for 5 seconds every 30 seconds than if each
one must execute for 60 seconds at 38 time. Each additional
terminal that is demanding continuous execution (in hisgh
eriority) makes it harder for the orerating sustem to
#rovide srorer resronse time to all other terminals.

Here are some exam~les of the kind of oreration that can
destrow resronse time if rerformed in high rrioritul

ERIT/3000y 2 GATHER ALL of a2 3000-line source file.
QUERYy serial read of 100,000 records

SORTy sorting S50»000 records.

C-93.5

OFTIMIZE

COROLy comeiling on 4 terminals a3t once.

All of these orerations should be dorme in low sriority in
batch STREAM .obs. These Jobs can even be created
duynamically by on~lime rrodrams, In this ways the on—-line
uger s¢till recuests the high-overhead orerationsy but the
sustem fulfills the recuest whern it has the time.

FIFTH FRINCIFLE: OFTIMIZE FOR THE COMMON EVENTS

In any arrlication where there is a3 larde variation between
the minimum and maximum load that 8 transsction can causers
the srodram should be ostimized around the most common size
of transaction. In any arrlication with 2 larde number of
orn—line functionsy it ig¢ likelw that 8 small number of
functions are used most of the time. In this casey a3ll
ortimization efforts should be aimed a3t the commonlw used
functions and other functions left a8s is. This is
esrecially feasible on the HFF 3000 becasuse of code
segmentation and duynamic stacks.

If N is the averadge number of records in a8 tramsaction (i.es
the number of lines on 38 customer ordery maximum is S00) s
thern allow room in wour stack for N records. IFf wou only
allowed for one recordy thern there would be urmeeded disc
thrashing, Alternativelyy if wou erovide room for the
maximum numbers then the data stack is much lardger tham
actually needed most of the time. Having 8 lardger datas
stack mag cause the sustem to overlosdy eliminating the
benefits of keering the records in wour stack. It is
recommended that room inm the stack bhe allowed for slightly
more than the averade numbers and that a NORUF disc file be
used to "rade" this aresa on verw large transactions.

C-93.6

OFTIMIZE

OFTIMIZING CASE STUDY #1: QEDIT

QREDIT is & high-sreedry low-overhead source rrodgram editor
develored by Robelle Consulting Ltd. The srimary ob.ective
of QEIIT is to rrovide the fastest rossible editing with the
minimum rossible sustem load. Other obdectives include
conservation of disc sracer similarity to ENIT/3000 in
command suntaxr abilite to recover the workfile following a
sustem crash or srodgram aborty and increased rrogrammer
Froductivity,

QEDIT and the First Princirle! Ilisc Accesses

In order to reduce disc accessesy QEDIT had to eliminate tLhe
overheads of the TEXTy KEEF and GATHER ALL commands of
EDNIT/3000., These three owerations have the most drastic
impact uron the resronse time of the other users. QEDIT
attacks the rroblem of KEEFs bw sroviding an interface
library that fools the HF cowmrilers into thinking that a
QEDIT workfile is reallw 8 "card image® Tile., As 3 resulty
it is never necessary to KEEF a workfile before comriling
ite Since KEEFs are rarely usedr most TEXTs are eliminated,
TEXT is only needed when wou want to make s backus or
duslicate cory of an existing file. It was anticirated that
most users would maintain their source files exclusively in
workfile formaty so the TEXT’ing of workfiles was ortimized
(by using NOBRUFy multi-record technicues) to be at lesst 4
times faster than a8 rnormal TEXT of a card image file. The
GATHER ALL oreration is slow becasuse it makes a corw of the
entire workfile in another file. QENIT rerumbers ur to 12
times faster bw doinmg without the file cory.

Disc accesses during interactive editing (addr deleter
chandger etc,) were minimized bw wracking as many contiguous
lines as rossible into each disc block. The resulting
workfile is seldom over S50%Z of the size of a3 normal KEEP
file or 25% of the size of an EDIT/3000 K-file (workfile).
Most QEDRIT users maintain a8ll of their source rrograms in
workfile formy since this saves disc sracey simrlifies
orerations (there need only be one corwy of each version of a
source srodram)y and rrovides ortimum on—-line rerformance.

QEDIT a3lways accesses its workfile im NORBUF mode and buffers
all new lines in the stack until a3 block is full before
writing to the disc. Wherever rossible in the codinsg of
QREDITy unnecessary disc transfers have been eliminated. For
examrler the workfile maintains onlwy forward direction
linkade rointersy which reduces the amount of disc 1/0
substantially, Results of a lodding test show thalt reducing
the size of the workfile and eliminating the need for
TEXT/KEEF reduces disc asccesses and CFU time bw 70-90X%.

C-93.7

OFTIMIZE

QEDIT and the Second Frincirle! Terminal Accesses

QEDNIT allows multirle commands rer liney wlus multisrle dats
lines rer data line irerut (i.er wou can enter 7 lines of
text without hitting ‘returr’). ALl interactiorn with the
terminal is done directly throush the REANX andg FRINT
instrinsics.

QEDRIT and the Third Frincirle! Frogrsm Size

QEDIT is & comrletely mew wrogramy written inm highly
structured and rrocedurized SFL. The resulting erogrvam file
consists of 7 code sedgmernts of 1780 words (decimal) each.
Only two code sedgments are reauired for most editing
commandsy while the most commorn function (adding mew lines)
recuires only one code sedgmernt most of the time.

QREDIT uses a8 minimum data stack and no extra data segments.
All error messadges are contained in the coder isolated in a3
seraralte code segmert that rneed rnot be residemt it wou make
Mo errors.,

RENIT and the Fourth Princirle! Constant Demands

Most QEDIT commands are so fast that thew zsre over before a
serious strain has been wlaced on the host machine. For
exameley 8 2000-1ine source srodram can he searched for a
string in four seconds. For those orerations which still
are too much loady QEDIT srovides the ability Lo switeh
Friority subeueuwes dunamicalluy. In facls the sustem manasger
can dictate 3 maximum sriority for certzin orersations such
as comrliles or TEXT and KEEF commands.

QEDLT and the Fifth Frincisled Common Events

The entire design of QEDIT is based om the observation that
srogram editing is mnot comrletely random. When 8 srogrammernr
changes lime 250y he is more likelwy to reauire asccess Lo
lines 245 throush 26% mext tharn he is to lines 670 throush
710. This observation dictated the desisgn of the indexins
scheme for the QEDNIT workfile.

There are many examrles of ortimizing For the most common
events in QEDIT: the blocksize will hold about 3 screenful
of data linesy built-in comsilers fast renumbering command
(600 lines rer second) in elace of 8 GATHER commarndr faster
TEXT ing of workfiles than KEEF files (4 to 7 times faster).

Results of Arrlying the Frincirles to QEDIT
In less than 7 secondsy QEDIT carn text 1000 limess rerumber
them and search for 3 string,. Commands are 80% to 1200%

faster than ERIT/3000y srodgram size is cult im halfy and disc
I/0 ang CFU time are reduced bw ue to 90%.

C-93.8

OFTIMIZE

In order to measure rerformancer an editor-callable
*rrocedure” was written that calculstes the elarsed time
(using TIMER intrimsic) and the srocessor time (FROCTIME
intrinsic) between events, QRENIT measured faster than
EDIT/3000 buy these rercentades?

Renumber 12047 faster
List to srinter 1157% faster
Find string 6137 faster
Chande 6457 faster
Kees 82%4 ftaster
Text from keerfile 447 faster
Text from workfile 733%Z faster

The more efficient the rrodgramming of am orerationy the less
sustem resources it consumes. MFE rrovides 3 "logdging"
facility to record the resource usade of rrograms for later
analuysis. BRoth QEDIT and EDIT/3000 were used to rerform 3
turical rrodgram maintensance chande (edity comriley correct
errors). According to the logdging statisticsy QEDIT reduced
overhead by these rercentades:

Phusical disc transfers 93% reduction

lise serace reuired 877% reduction
ey time 727 reduction
Frogram size 637% reduction
Totsl data srace 5374 reduction
Iata stack size 437 reduction

Frogramming of QEDNIT bedan in March 1977 and user-site
testing in Sestember 1977. At the rresent time (Sertember
1978)y there are 20 QEDRNIT user inmstallations. QEDIT shows
what can be accomrlished bw arrluing 311 of these ostimizing
rrincirles in the desisgn of one sustem. In ang diven
arrlication sustemy it may not be rossible to take asdvantade
of a3ll five srincirless but to whatever extent thew can be
agrrliedy the resulting swstem will rrovide beltter service
than it would have.

For more informatiorn om QEDITy contact me directlu?

Robert M. Green

Robelle Consulting Ltd.
#130-5421 10th Ave.
leltsy B. C. Canadsa

VaM 379

Fhonet: (604) 943-8021

C-93.9

OFTIMIZE

OFTIMIZING CASE STUDY #2! AFFLYING FAYMENTS

In this asccounts receivable swustemsy 24,000 invoices rer
month are rosted to 10y000 customer sccounts. The rmumber of
uneaid items revr customer varies from ome or Ltwo (a8 lot of
accounts) to S00 (a3 few mador accounts). The A/R are
maintained on an oren-item basis. That isy the invoices
arrear on the customer’s statement easch month until thew are
matched ur with a8 raument asnd considered reconciled,. About
200-300 cheaues are rosted to the database each daw., The
rroblem is¢ Lo allow the A/R clerks to "arrluy® the sauments
to the srorer invoices in the chearest rossible manner.
Certain other constraints exist: the machine is a8 Series Iy
only dumb terminals are to he usedr and the sustem is
already surrorting about 17 terminsls arnd seems fullyg
loaded,

The comruter sustem casnnot tolerate the overhead to scan
downn the chain of records for each account (DRGETs) and
srint them on the screen, There is too hesvy 3 load
slready, In additions the software would have to skir over
(i.@ey et and ignore) a laerde rnumber of said invoices to
find the unraid ones,

A/R and the First FPrincirle! Disc Accesses

A/R uses a8 database to index entries by sccount and sort
them by datey bul allows mo on~line usdates to the database.
Thew are too slow and too hard to control (recover/balance).
Urdates are only allowed by secuential basteh srodgrams.

Each clerk is rrovided with a transaction disc file for her
"ledder®y containing cories of her sctive accounts (14
entries/block), She also has a rrintout that shows each
aecount and dgives its location in the file. The disc file
and associated linerrinter rerort are srerared in batch.

The user accesses this file im on-line mode and converts the
entries into datasbase transactions.

The transaction file is accessed in NOBUF mode and contains
only unraid invoices. All on-line sctivity is dome into
this filesy themny at nighty those entries which have been
marked in the file for asrlication are retrieved from the
database and urdated.

A/R and the Second Princirle! Terminal Accesses

The user inrut suntax allows (but does not recuire) manw
individual instructiorns to be entered in each input line.
This examrle arrlies 3 raument to seven invoices and writes
38 small adiustment against one invoice!

/1ABRDEFGHyAC(1010~-101057,5050C)

C-3.10

OFTIMIZE

A mador design rroblem was how to refer to the items that
are on the customer’s account. The invoice number is too
long for efficient data entry (3rnd subdect to errors). A
seauvence rnumber could have been sssigned to each entry on an
account. Howevers invoices are not =aid in secuence’
eventuallyy the secuence numbers would be as lardge as the
invoice numbers. A auick caslculation showed that the time
recuired to assidn rnew seaquence rumbers was rrohibitive
(because of DR inefficiencies). The scheme settled uron
assigned relative rosition rmumbers to each wumraid item on a
dynamic basisy but these numbers asre not sctually stored in
the database. In order to shorten ineruts an alrhanumeric
code was used (AsEBrCeseZrAlsees)e In retrosrecty a8 rure
numeric secuence number might have been better hecause of
the inrut sreed of rumeric keurads.

A/R and the Third Frincirle! Frodgram Size

A/R is written entirely in SFL/73000. Stack sizes are modest
(2K-3K decimal or less)y and only one disc block is kert in
the stack. SFL rrocedures were created to simulste a3 mini-
file sustem for the transaction files. The rrocedures do
a8ll deblocking andgd disc inrut/outesut,s This simrlified
coding of the three mador srograms.

A/R and the Fourth Frincirle! Constant Demands

There are a few srecial transactions that can take ue to a
mirutey but thew are very rare and can be idnored. Most
transactions are verw shorty and a8ll data is available in
memorgy or is one disc read awad.

A/R and the Fifth Frincirle! Common Events

This #srincirle was arrlied heavilw to A/R. The most common
event is to arrly 8 raument that came in vesterdsw to am old
irnvoice(s). Alsoy most accounts have less than 10
outstanding items. Thereforey this sustem anticirstes the
next dag’s recuests by creating the batch-file/rrintout of
all the accounts with am unarrlied ravment. For those
accounts that reauire attentionr but have mo sauments the
clerk loads them into her batch file on~lire (rare), The
tlocksize was wricked so that most accourmts could fit in one
block.,

The transaction to arrly 3 raument is?

»10117467/1AGH
~Invoice lines
“Pavment number
“lisc location of the account (from srintout)
“Account number
“Fromet Character

C-23.11

OFTIMIZE

Sirnce starting sroductions we have discovered that usuallwy
the account # amd locastion & entered is Just Lhe one Lhat
secuentially follows the last one. Thereforer bLhe swustem
will somedaw be changed to sllow entry of X for next
account.

Whern converting from the marmual swustem Lo & sure on-line
comFuter sustemy bthe ability to write motes om the
customer’s account card was lost. After a8 Few monthsy we
found ourselves under heavy eressure Lo create new tures of
transactions in the swstem to handle the many srecial 5
that arose (raid twicer oversaidy short-raidr took ore
note twicer etces)s The original des

dit
igr only allowed for
four tures of Lransactions! invoicer saumenty adiustment
and Jdournal enltry (8 lardge adiustment with 3 unieue numbsr
assidgned for control rurroses). Rather than clutter us the
desisgny we added the ability Lo write wmulti~line comments

for any Jdournal entry, With these commentsy the AO/R clerk
can now communicate directly with the customer’ s accounts
rawable clerk to exslain the sroblem in Ensglish. Sir e
comments are kerl in a serarate datasetr indexed bu Lhe
unieue Journal entry numbersy Lhere o additionsl overtiead
on ordinary transachtions.

Basis for future exransion! since most accounts raw in &
simrle eatterny the comruter will (in batoh) sre-grely the
ravments when creating the transsction File. Then the
orerator need only take action if the comeuter hass selecherd
incorrectly.

Results of Arrlging the Frincirles to AR

The asrlication maintains 10,000 accounts with 245000
invoices rer monthy using two ADM~3 terminals om a CX-3000
with 15-19 other terminals doing less ortimized things. ASR
staff has been reduced from seven reorle to two. At the
same timer the three terminals used for srogram develosment
were switched to QEDIT. Resronse time has asctuslly imeroved
orn old arrlications. At the same timesy 2 Lerminals have
been added to the sustem.

For more information on this examsle of areluing ortimizing
srincirlesy comtact the user site directlu!

Garyg Nordmany Manader of Sustems Develorment
Malkirn & Finton Industrial Sueselies

25 East Fifth Avenue

Vancouvery EB.L. Canada

UST 1H6G

C-p3.12

OFTIMIZE

AFFENDIIX A! REFERENCES ON HF 3000 OFTIMIZING

11 Tramsaction Frocessing on the HF 3000 Series III.

Some HF field Sustem Endineers have this
internal HF documernt which describes the internal
workings of these software sroducts:

IMAGE

KSAM

FILE SYSTEM

COROL.

FORTRAN

[21 COMMUNICATOR No. 14,
Fage 87y Rlock/Fage mode rroblems.

[31 COMMUNICATOR No. 12.
Sedmentation im COROL

C41 COMMUNICATOR No. 5.
Segmentation for Maximum Efficiency
of Sustem-Ture Frodgrams.

[51 JOURNAL-3000 Vol 1y No. 6.
KSAM vs. IMAGE
HF 3000 with Front-End Frocessor
FORTRAN Ostimization

L6 JOURNAL~3000 Vol. 1y No. 5.
QENITy Quick Frogram Editinsy
Small Arretite for Comruter Time.

L7121 JOURNAL-3000 VOL.. 1y No. 4.
Using Extrs Data Sedgments.
Commonr Frogramming Errors with IMAGE/3000.

[81 CONTRIRUTED LIEBRARYs Vol I/II.
INEA Frosram
IDEAIT Frosgram
RESF Frogram
IDLE Frogram
FROGSTAT FROGRAM

[91 CONTRIRUTED LIEBRARYy Vol III.
S00 FProdgram
DERERILD Prodgram

£10] CONTRIRUTED LIEBRARY» "Vol IV*".

IESTAT Frodgram
NECHANGE Frogram

C-P3.13

(I A

£121

[1371

[171

£181

SCRUG MEETING LIBRARYs March 1978,

FASTER - An essaw on writing srograms for
greater afficiency.

OVERLORD (See also $500.)

DRSTAT - Internal efficiency of master
datasels,

SHOWVUM - Shows virtusl memivou.

STACKOFT ~ Stack ortimizing routines.

SCRUG MEETING NOTESs March 1978,
Extra Data Sedgments and Frocess Harmdling
Orerator Utilities

INTERNATIONAL USERS MEETINGy 1977,
KEAM (see exblra dats sedgment sizey load Limes)
IMAGE for the advanced User
Orbimizing FORTRAN ITV/3000
RFG/3000 Frogramming Ostimization
Dnata Entry Techniques
Sedgmentation
MFE I1I Measurement arnd Ortimization
MFE C Measurement and Osrtimization

INTERNATIONAL USERS MEETINGs Februarwy 1975.
Software Ortimizastion Throudgh Sesmentation

INTERNATIONAL USERS MEETING: Maw 1974.
Frogram FPerformance

CCRUG MEETING MINUTES, Maw 9y 1978,
INEA Frodgram
NEDRIVER Frogram

FERFORMANCE GUIDELINES/SERIES III (HF 5953-0533),
Note the extra load of suymchronous terminals(s.9)
and the dramatic increase in the number of

terminals surrorted whern a3 simele file is used
instead of IMAGE/DEL/COROL .

S5FL/73000 FOR COMMERCIAL AFFLICATIONSS

EFFICTENCY WITH EASE OF MAINTENANCE.
Rerort available from Robelle Consulting Ltd.

C-03.14

OFTIMIZE

OFTIMIZE

AFFENDIX EB: SHRINKING THE STACK SIZE

The following SFL code can be added to anwy srogram

that calls a lot of rrocedures (or suberosrams in COROL)
in order to dunamically ortimize the size of the datsa
stack.

CHECKSTACK LIBRARY SUEROUTINES

1.Checks for excessive dunamic stack srace after
subroutine calls and adiusts the stack sizesy consists
of three routines that are intended to be called
from the mainline of an arrlicabtion srogram that
uses many suberograms with varwing datse recuirements.

2.Contents?! CHECKSTACK1ly CHECKSTACKZ2sy CHECKSTACK3.

3.Farameters: WORRKSFACE: 20 butes of global data in the
calling srodgram. The srorer COBOL definition is?

01 CHECK-STACK-SFACE .
0% FRINT-RESULTS-FLAG FIC §9(3) COMF VALUE N.

X N=0(NO FRINTOUT) »1(ON TERMINAL) Y
X 2(ON CONSOLE)»3(ON EBOTH) .
05 FILLER FIC X(18).

HOW TO USE CHECKSTAK:

1. Add the WORKSFACE to the dats division of wour prodgdram
and set the desired PRINT/FLAG value(see ster 4).

2., At the start of srodram execution?
CALL "CHECKSTACK1" USING CHECK-STACK-SFACE.
This call should occur once at the start of the
mainline. The rurrose is to record the size of
the dunamic stack ares before anwy subsrodrams are

called, This size is determined by STACK=XXXX in the
tFREF or (RUN commands.

3, After returming from each subrrodram call?
CALL "CHECKSTACK2®" USING CHECK-STACK-SFACE.
This call comeares the current durnamic stack aresa

with the initial size and if it is over 512 words
larder (1024 butes)r reduces it back to the initial.

C-03.15

OFTIMIZE

4, At the end of rrodgram execution!
CALL "CHECKSTACK3" USING CHECK-STACK-SFACE.

This e8ll rrints statistics on stack usade on
either $8TOLIST or the console or both. Format is!

GLOE9? STK?? #0K99 AVGS9 ¥ANJP9 81299

~ Global stack size in decimal words
“ Initial dynamic stack size

” Number of "0K®" subrrodgram cslls
Averade stack size rer "0K* cazll”™

Number of times stack was adiusted -~
Averade stack size rer adiusted call ~

Start with the default value for STACK= (about 800)

and a8 larde value for MAXDATA (20000). If 811 of the
subrrogram calls are addusted (i.e.sy OK=0)y increase the
STACK= value. Truy to find 2 value where most of the
subrrogram calls execute without having to shrink the
stack afterwardsy but rnot so lardge that there are ro larde
subrrodrams left ot addust,

INSTALLATION OF CHECKSTAK?

1, Ture the following SFL source code into the
system using QEDIT or EDNIT/3000 and
create a source file.

2, Comrile the source file and make corrections
until there are no errors!

¢SFL. SOURCE

3+ When gou have a3 successful comriler save the
UsL filer using this command?

¢{SAVE $0LDFASSyUSLSFL

4. Either COFY the sedgment called "LIRSEGL" into
the USL file of wvour arrlication srodgram
(using the (SEGMENTER commands AUXUSL and COFY)
or add it to an SL (!SEGMENTER or !SYSDUMF).

C-23.16

$CONTROL LIST»SUBFROGRAM»MAIN=LIBSEG1yERRORS=9
BEGIN

FROCEDURE CHECKSTACKL ¢ BUF) ¥
INTEGER ARRAY RUF »

BEGIN

<< DEFINE STRUCTURE/USE OF ERUF X

DOURLE ARRAY DRUF (X) = BRUF}j

DEFINE
FRINT‘FLAG = RUF#$ y INITIAL/SFACE = BUF(1)#%
s SHRINK/COUNT = RUF(2)# sORK‘COUNT = RUF (3) %

yOK’SFACE = DRUF(2)# s SHRINK * SFACE

3t
i3

DRUF (3) &
?
INTEGER Z»Q35

IF NOT ¢ O«<=FRINT’FLAG<=3) THEN
FRINT’FLAG &= 15 <<DEF>>

FUSH (ZyQ)§% Z:=TOS% QiI=TOSGH

INITIAL/SFACE = Z - Q3
RUF (2) = 0}
MOVE BUF(3) = BUF(2)s(7)5

ENDF << CHECKSTACK1

FROCEDURE CHECKSTACK2 ¢ BUF) ¥
INTEGER ARRAY EBUF ¥

BEGIN

< DEFINE STRUCTURE/USE OF BUF

DOUBLE ARRAY DEUF (X) = EBUF}$

DEFINE
FRINT‘FLAG = RUF# yINITIAL'SFACE = BUF(1)#
s SHRINK/COUNT = EBUF(2)¥% yORK‘COUNT = BUF (3)#
= NRUF(3)#%

yOK‘SFACE = DRUF(2)# » SHRINK’ SFACE

?
INTEGER Zy Qy STACKSIZES
INTRINSIC ZSIZEj

FUSH (Z,Q)3 Zi=TOSs Q:3=TOSs

STACKSIZE (= Z ~ Qs

IF STACKSIZE > (INITIAL‘SFACE + S512) THEN BEGIN
ZSIZE (Q + INITIAL‘SFACE)3¥
SHRINK/COUNT $= SHRINK’COUNT + 1%
SHRINK’SFACE (= SHRINK’SFACE + DOUBLE(STACKRSIZE)
END

ELSE EEGIN
OK/COUNT = OK’COUNT + 1%
OK’/SFPACE $= OK‘SFACE + DOUBLE(STACKSIZE) s
END#

END? <<CHECKSTACK2:>

C-93.17

OFTIMIZE

OFTIMIZE

FROCEDURE CHECKSTACK3 (RUF)
INTEGER ARRAY RUF §

REGIN

i DEFINE STRUCTURE/ZUSE OF RUF =

NOUBLE ARRAY DRUF (%) = RBUF3;

DEF INE

FRINTFLAG = RUF# y INITIAL/SFACE = BUF(1)#
s SHRINK/COUNT = BUF(2)%# »0OK’COUNT = RUF (3) %
yORSFACE = DRUF(2)4% y SHRINK‘SPACE = DRUF (3) %

4
INTEGER ARRAY F(0338)3
BYTE ARRAY F 7 (X)=f5
INTEGER TERMINAL
INTEGER GLORAL‘SFACE
INTRINSIC FRINTsFRINTOFy ASCIIyDASCIIsWHOyDATELINES

IF PRINT‘FLAG = O THEN RETURN;

IF FRINT’FLAG=2 OR FRINT‘FLAG=3 THEN REGIN
“u PRINT IDENTIFYING MESSAGE ON THE CONSOLE >
=" "5 MOVE P(L) =Py (38)5
MOVE F (="CHECK~-STACK?! "}
WHOCs s 9 P2 CL2) 97 (21) 9P/ (30) y s TERMINAL) §
MOVE F7(39) = "0ON";
ASCTII(TERMINAL 9 10¢F 7/ (42)) 5
FrC20) 3=/ (29)=","5
FRINTOF(Fs—-4670) 7

END G
=" %5 MOVE P(1) ¢=Fy(38)5
MOVE F=*GLOER"S

FUSH (Q)5

GLORAL ‘SFACE $= TO0S3

ASCIT(GLORAL ‘SFACEy10sF/(4)) %

MOVE F“(10)3="8TK"3$

ASCITCINITIAL SFACEy10sF/ (13))5

MOVE P’ (19)i="40K"$
ASCIT(OK/COUNT»10sF/ (22)) %

MOVE F7(28):="AVUG" }
DASCII(OK’SFACE/DOURBLE(OK/COUNT) »10sF“ (31)) 5
MOVE F7(37):(="%ADJ"}
ASCIT(SHRINK‘COUNT105F/ (41)) 5

MOVE F“(47):="QIZ"%
DASCIT(SHRINK/SFACE/DOURLE (SHRINK/COUNT) »10sF“ (50)) %

IF PRINT‘FLAG=2 OR PRINT’FLAG=3 THEN
FRINTOF(Fy~5690)5

IF FRINT’FLAG=1 OR FRINT‘FLAG=3 THEN
FRINT(F»=56+0)3

ENDF << CHECKSTACK3 =
END <<LIBRARY »x ,

C-03.18

	Papers / Presentations
	Machine Utilization
	HP 3000/Optimizing On-line Programs

