
MPE OHJ~C'" COOt; t-°Ur'MATS
A;~ I N TR()Due TIn N TU 1I SlJ AND P}{ () GHAj'\ ~ I i.. r: s

Matthe~ J. Balander
The H ~ b Computer Company

ABS1HAcr: The format and ~anagement of USL an~ PHUGHAM files
under the MPE 111 operating system, running on Hewlett
PacKard 3000/11 and 300()/III computer systems, are presented
in this paper. USL tiles dre used to store relocatable
binary modules, and P~OGkAM tiles to store fully ~re~ared

proqrams. Tne presentation is ai~ed at programmers
implementinQ compilers on riP30vO systems. The reaaer is
assumed to oe familiar with the arChitecture ot these
systems, and to understand basic concepts of relocatable
code, linK erlitinq, and so on. The scope of the presentation
is intended to provide the reader an ddequate bac~ground wlth
whiCh to successfully pursue a compiler-writi~q project.

CIJN'I'ENTS

1. Introduction
1.1 Overview
1.2 Conventions

2. PROGRAM files
?. t Contents of PRUGkAt., files
2.2 Tne fixed area
2.3 The global DB part
2.4 The seqments list
2.5 The externals list
2.6 The entry points list

3. USL
3.1
3.2
3.3
3.4

3.5

files
Contents ot USL files
File addressing
Record zero
'rhe d ire c tor y
3.4.1 Directory lists
3.4.2 Directory entries
3.4.3 Header intormation blocKs
The information arp.a
3.5.1 Code modules
3.5.2 Information neaders

(e) Copyright 197H by Tne B&B Computer COfupany

C-02.01

1. Introduction

1.1. Overview---__-----.-
All operating systems adopt conventions concernlng tne
torlliats of object code files. tnese files must be in
correct formats to be processed by system seglllenters,
linkage eaitors, and loaders. Tne MP~ operatinq system
defines tour types, or tormats, of object coae files, as
follows: user subprogram libraries lUSL's), relocatable
libraries (RL's), segmented libraries (SL's), and program
files (PHUGRAM's). Of these, RL's and SL's have rather
speclalized uses, and their tormats are of little interest
to the compiler writer. The formats of USL and P~U~RAM

files, on the other hand, are of qredt interest. If a
compiler is to produce absolute code, it ~ill generate
PAOGHAM tiles. It it is to produce relocatable cOde, it
will generate USL files.

'I' his pap e r pre sen t san 0 ve r vie W 0 f the for mat s 0 f tJ SI, and
PROGkAM file formats used oy MP~ III, on HP300U/JI and
HP3000/II1 computer systems. It is neither exnaustive nor
scrupulously detailed. Readers with some experience 1n
object code formats will not find it ditficult to fill in
aetails not included here by examining USL and PRUGRAM
files.

A word of caution to the reader is appropriate at this
point. Hewlett Packard is unco-operative, and seems quite
indifferent to the needs of its users to unaerstana MPE
conventions. Because ot this, all the information in this
paper had to be deduced trom examination ot USL and PRUGKAM
files. In consequence, although the author believes the
information inclUded here to be fully accurate as ot tne
date of this writing, the reader should keep In mind that it
may nonetheless include some errors. For the most part,
tho uqh , it",a y be use d 'II i t h con f 1denc e • 'I'he aut h0 r has
written a compiler which generates USL files based on
section three of this paper, and a PROGRAM file decompiler
based on section two. Both are operating satisfactorily.

1.2. Conventions

A numoer of conventions are adopted to enable concise
explanations and illustrations. These conventions are
applied consistently, but occassional, well-marKed
oeviations do occur. The conv.entlons are as follows:

C-02.02

o SPL/jOUO notation is used in all cases where
illustrative code is provided.

o uP" represents d variable ot type integer pointer. In
all taoles, illustrations, and examples it 1S assumed
to point to the first word of the entity under
discussion.

o In the Cdse of sinyle bit fields, "1" is the "on ll

state, and "Oil is the 1I 0 ft" state. SimIlarly, the on
state is the true state, ana the off state is toe
talse state.

o hames in P~OGHAH and USL files, such as procedure or
seqment names, are d variable number of words in
length. The first byte ot d name is always in the
P.l&:~J field, tne length at the name in bytes in
P.(4:4), and various context-dPpendent information in
P.{O:4). The nnme continues in as many consecutive
bytes as needed, beginning with P.(8:8). A name field
is dlways an integral number of words in length. rne
last byte is thus wasted it tOe name is an even numoer
of bytes long. In illustrations, the P.(O:~) field
will be diagrammed explicitly, but the remainder of
the name will be shown simply as a large undivided
area. The reader Should Keep in mind that this
represents a variable length field. In the text of the
oaper, trtis entire group of fieldS is referred to as a
"name field," and the various parts are not
explicitly mentioned unless necessary for the
discussion.

o In illustrations, when
indicated otherwise, it
niobles. Because of
indications are given
nibble aligned fields.

a word is diVided, unless
is divided into bytes, or into
this, no explicit bit tiela

in illustrations for byte or

C-02.03

2. ~~UGkAM files

The loader in MPE processes PR()G~AM tiles. In a proqram
tile, all relocatable r~ferences have been resolvea, globdl
storage laid out and initialized, and seymentation
completed. The only linK editing remaining to be done is to
estat.>lish linKayes witn external proqram units to De found
in SL's. This last linKing step involves only tne
completion of segment transter taDles. Particular STT
entries nave alreadY been assign~d to particular externals,
so no relocation per se need be performed dt load time.

PROGkAM files have ttle following file chdracteristics:

o I tl e 1r r ecordIe ng t h 1 5 12B w0 r ds •

o Tney are identified by a file coae of lOl9.

o fne tile lenyth is between 4 and 32127 records,
inclusive

o The records are fixed length, binary, without carriage
control.

o tne file consists ot only a single extent.

All tnese restrictions are imposed by the MPE segmenter and
loader. Other tile configurations are not acceptaole.

2.1. Contents of PkUGHAM tiles

---------~---~-----------------

A program tile lS logically divided into five parts, each ot
which must begin on a record boundary. The parts are as
tollows:

1. A "fixed area" containing pointers to the rest of
the file, and other miscellaneous information

2. An image of the initial glObal DB area tor the
program, already tully initialized

3. The code segments comprising the program

4. A list ot externals reterenced by the program

5. A list of entry points to the program.

lhese five parts will occur in a PkU~RAM file in the oraer
listed. If a proqranl uses no qlobnl DB storage, the global
DB area part of tne tile will be omitted. ~ince dll tive
parts ot proqrarn files neqin on record Doundaries, record
addresses are used throuyhout toe tile for indlcatlnq tne
location of needed intormation. All record aOdresses used
in pro~ram tiles are single *ord inteoers.

2.2. The tixea area

The fixed area occupies the first one or two records of tne
file. The length ot the area, one or two records, depends on
li he t ne r 0 r no t a 11 the in tor mat i on t 0 De inc 1uoed in ttl e
area tits in a sinqle record. It will alwdYs fit in two.
Table 2.2A lists the contents of the fixed area in order.

Table 2.2A -- Fixed Area Contents

fiela Contents

~--------~ --~-----------------_.------~----------

P.(O:l) program contains fatal error

P.(1:1) program contains non-fatal error

P.(2:1) zero the D~ area prior to startlnq
execution of the program

P.(3:1) program contains
privileged segment

at least one

P.(4:2)

P.(b:1)

P.(?:1)

P.(H:l)

P.(9:1)

P.(IO:1)

P.(11:1)

(use undetermined, only zero observed)

program nas NS capaoility

program has BA cdPability

program nas IA capability

program has PM capability

program has CR capability

program has RT capabillty

Table 2.2A -- Fixed Area Contents (cont.)

fiela Contents

~-~------- -------------------------------~-------

P.(12:1) program has MR capability

P.(13:!) (use undetermined, only zero observed)

P.(14:1) program has OS capaoility

P.(15:1) program has PH capability

pel) the number of segments in the program

P(2) the number of words in the global DH
area of the program·s run-time stacK

P(3) beginning record number of the image of
the global DH area of the stacK (Should
be ignored if P(2)=O)

P(4) beginning record number of the segments
list

pes)

PC?)

P(8)

P(9)

P(IO)

P(ll)

P(12)

the initial stack size (";STACK=" Of
prep command)

the initial DL size (";DL=" of prep
command, zero if ";DL=" not specified)

the maxdata specification (";MAXDATA="
of prep command, -1 If ";MAXDATA=" not
specified)

beginning record number of entry points
list

logical segment number of the entry
points to the program

PB relative address of primary entry
point

execution time DB relative address of a
table used by TRACg/3000 (-1 it table
not used)

execution time DB relative address of
the .FORTRAN logical units table, the
FLUT (-1 it FLUT not used)

----------------------~----------------------------

'rable 2.2A -- fixed Area Contents (cont.)
-~----~----~~~-~~----~-~----~--~.--~~~-----~---~-~-

field Contents
~~----~~-- ~~---------------------~--~~-----~-----

P(13) beq1nning record
externals list

number ot the

P(14)

P{16J
to

P{27)

STr number ot primary entry point

execution time DR relative address of
TRAPCUM·, a common block used tor
interfacing to user trap rOutines

tnese locations have been ooserved only
with the value zero--they are probably
reserved, and should always be zero

Following P(21) are two variable length sUbareas of the
fixed area. The first begins in P(28), and is P(l) bytes
in length. That is, there is one byte for each segment in
the program. This subarea is always an integral numbel of
words in length, so a byte is sometimes waSted on tne end.
It is oelleved tnat the loader uses tnis SUbarea tor
mapping logical segments to actual segments. After a
program has been prepared, but before it has ever been
loaded, tnis subarea will contain all zeros.

The second subarea begins in the word immediately followinq
the last word of the first subarea. The second SUbarea
inclUdes a one-word segment descriptor tor each segment in
the program. These segment descriptors are in the same
order as tne segments tnemselves in the file. The tormat
ot a segment descriptor is given In table 2.28.

Table 2.2B -- Segment Descriptor format

field Contents
---------- -----------~--~~------------~---------

P.(O:l} seqment is privileged

~.(1:1) (use undetermined, only zero Observed)

P.(2:14) the length at the seqment, 1n words

--

C-02.07

2.3. the global DB part

-----------------------~

The Qlobal DB part is simply an image of all DB and
secondary DB which is to oe allocated when the program
beqins execution. As many recordS as necessary are used to
hold the needed number of words. Unused words at the end
of the last record, if any, are ignored. It the number of
words of OB is given in the fixed area as zero, then this
area may be omitted trom the file altogether, and the
record pointer to this area in the fixed area may be set to
one (one is the only value tor this pointer yet observed in
this context).

This DB area image is fully initialized. It includes
TRACE/3000 tables, the FLUT table, common blocks, DB and
secondary DB arrays and simple variables, and anything else
whicn must be placed in the DB area. There is no
opportunity to add to the D8 glObal area once the progranl
oeqins execution, since it will De delimited by Dtl and the
initial Q register setting. Allowance must be made for all
global run-time storage at the time the PROGRAM tile is
generated.

2.4. The segments list

~-----------------------

The code segments which comprise the program are placed,
one after another, 1n the segments list. Eacn segment
oegins on a record boundary, and occupies an integral
number ot recordS. The actual length of each segment, in
~ordS, is given in the segment descriptor words in tile
fixed area ot the P~OGRAM tile. Unused words at the end ot
the last record ot a segment, if any, are ignored.

The code seqments ot a program are otten referred to by
their logical segment numbers. A logical segment number
simply gives the position of the segment In the segments
list. the first segment in the segments list Is logical
segment number zero, the next is loqical segment number
one, and so on. Actual segment numbers, which will be used
in the xeST for the program, are assigned by the loader
when the program is loaded. Seqment transfer taoles will
contain the actUal segment numpers used when the program
was last loadea.

Tnere 1s a one-to-one correspondence between the entries in
the segment descriptor words in the secon. SUbarea of the
tixed area, and the seqments in the segments list. The
first descriptor applies to the' tirst segment, the second
to the second, and so on. The record number of any

C-02.08

particular segment 1n the file must be deduced (rom ttle
seqment oescriptor woras. If, tor examole, it were aesirea
to find the second segment, the first seoment descriptor
word would be used to calculate the numbPr of recoras
oc cup i e d 0 Y the t irs t seq 01 en t • This numbe r w0 u 1d be au d eo
tother e cor d numoe r oft. 11 e beq inn i nqat t ne seq hi e n t s 1i s t
given In the fixed area. tne resulting recore number is
the first record of the oeslrerl spqment.

2.5. The externals list

The externals list includes entries for all externals
reterenced by tne program. for eacn external it gives the
segment and STT numoers of tne program seqments to oe
patcned with the actual segment and STr numoers ot the
external. In addition, a parameter information block is
incluaed in eaCh entry, ~;tlicn indicdtes ttle callinq
sequence which the program uses to cdll the external. lnis
list is orqanized as a simple linear list. The list is
termindted by an "entry" ~ith zero in its first word.

II!ustration 2.5 ShOWS the format ot entries on the
externdls list. Each entry begins with a name field. The
P.(O:4) tield of tne name field is unused, and should De
set to zero. following the name field is a word witn tnree
tlelds. ~.(O:4) of this ~ora should oe set to zero. It is
unused. The use of P.(4:4) is not tully known, but it
appedrs to be used by the loader to indicate no'", the
externdl reference was satisflea. Woen generdtinq tne
program file, it should be set to zero. P.(8:8) yives toe
number of! references to this external by the proqram.
(This number shoula never exceed the maximum numoer of code
seqments allowed for d sinqle program, since a given
external Should occur only once in any given seqrnent
transter table.)

Following the word giving the number of reterences, there
is a one-~ord reference descriptor tor each reference.
This field is thus variable in lenqth. P.(O:~) ot eacn
descriptor yives the segment transfer table entry number
for tois external in a referencing proqram segment, ana
P.(8:8) gives the logical segment number of the reterencinq
program segment. This entire area is shown as a single
undivided drea in illustration ~.5, but the reader Shoula
keep in mind that it is a variable lenqth field.

After tne reterence descrIptors is a parameter information
blocK. This parameter intorruation olock is in the same
tormat used in USL files.

C-02.09

-~--~--~~~~~~~~--~-~~-~--------~---~-~~~~~-----~~~--~--~-~~--

0 IName Length I
Name ot ~xternal

0 I Satisfier I Number of References

Reference Descriptors

Pardmeter Information Rlock

Illustration 2.5 -- format of ~xternals List Members

2.b. The entry points list

The entry points list gives all entries to the program. At
least the name of the outer clock is included in tnis list.
All entrY points to the program must ot course oe in the
same seqment as the primary entry point. rhe logical
segment n~mber of this segment is indicated 1n the fixea
area 1n the beginning of the program file. This list is a
simple linear list. It is terminated by a list "member"
With zero in lts first word.

Members ot tne entry points list all consist of a name
fiela followed by exactly t~o words. The P.{O:4) field of
the ndme field is unused and Should be set to zero. The
tirst of the t~o words follo~ing the name gives the pa
relative address of the entry point. The second gives the
seyment transfer table numoer of the entry point.

Tne format of entry points list members is shown in
illustration 2.6.

C-02.10

0 IName Length I
Name ot Entry Point

Ph Rp.lative Address ot I:.:ntry Point

S'C'f Numoer of Entry Point

------~-~-~---~~--------~~--~---~---~------~~~-~------~~---~-
I,
I
I
I
I
I
I
I
t
I
I

--~--~--~---~~~---------~----~------~--~--~----------~-------

Illustration 2.b -- Format ot ~ntry Points List Members

3. USL tiles
.. __ .._--- ..----

USL tlles are the principal torm of input to the MPE
se~menter. From a USL tile ~ith the appropriate contents
the segmenter can qenerate SL, kL, and PROGRAM tiles.
"Pelocatable binary mOdules" are stored in USL·s.
Segmentation, global ana secondary O~ address assignments,
external procedure reterences, PB relative reterences, and
the °1 ike have not yPt been resol ved in these tiles.
Altnouqh USL files constitute the most complex torm of
compiler output on HP3000 computer systems, they are also
the ffiOSt tlexible, giving the user tne most options.

USL files have the following file characteristics:

o Their record length is 128 woras.

o Tney are identifiea by a file code of 1024.

o Tne file length must be from 4 to 32121 records,
inclusive.

a Records must be tixea-length binary, without carriage
control.

These restrictions are
UnliKe program tiles,
number ot ex~ents.

imposed by tne
lJSL files may be

C-02.11

MPE segmenter.
composed of any

3.1. Contents of USL files

---~-~-~~------------------

A US., tile is logicdlly divided into three major parts,
each of which ffiuSt beqin on a record boundary. The parts
are as follows:

1. "record zero" containing pointers to the rest ot
the tile, list heads, and other miscellaneous
informdtion

2. the "directory" containing one entry for every kbM,
seqment, ana entry point in the tile

3. the "information blOCk" containing all information
headers and code modules.

Tnese toree parts al~ays occur in the order specitied, and
are of a tixed length in any given file. Tois length may
vary trom file to file, but within anyone file, the
boundaries are clearly detined by Information in record
zero. Hecord zero is dlways simply the first record in tOe
USL file.

The directory always beqins with the second record of the
USL tile, at tile address 00001 000 (see 3.2 for a
discussion of tile adaressinqJ. The information blOCK
always beqins at a tile -address specified 1n record zero.
In both the directory and the information block,
information is placed in successive contiquous locations.
Record boundaries are not recognized. It any entries or
neaaers are deletea from either ot these t*o areas, the
space they formerly occupied Is not recovered. It is
referred to as "qarbaqe," and is never used again.
Never-used airectory space is referred to as "dvailable"
directory, and never-used information blOCK space as
"available" information.

An intrinsic named ADJlJSTUSLr, documented in the MPE
segmenter reference manual, may be used to expand the
directory or the information blocK as desirea. TOe
directory, nowever, may not exceed 32K words, and the file
may not exceed a total ot 32K-l records.

A USL file may be initialized to the empty state via the
intrinsic INITUSL. Tnis intrinsic is documented 1n the MPE:
segmenter reterence manual.

In total, tnen, a USL file consists of the following five
parts, in this order: record zero, in-use directory,
available directory, in-use information, and available
information. These areas are delimited by pointers and
length values kept in record zero.

C-02.12

3.2. ~ile addressinq

It is appropriate at this point to discuss tJSL tile
addressing. Locations witrlin a USl, file are ldentitied by
s pee i f yinq the W0 r d wit tl i nthe til e wh i c n i sot i n t ere st.
The tirst word In tne tile is Nord number zero. Seven oits
are required to specify tne otfset of a word from tOe
beqinninq at a record. Up to 15 bits rudY be required to
s pecit y r e cor d wit h in til e • f U 1 1 f i 1e a a d res s e s are ttl us
normdlly storeo In double words, in whlCh strictly speaking
only tne low oreier '2.2 oits are siqnlficant.

File addressing ~ithin the oirectory is somewnat aifterent.
Single word addresses are used. P.(Y:7) is still ~ wora
offset into a particular record, but P.(l:B) IS no~ the
record number.

Unusea t1i~n-order bits ir hoth dOuble and single word file
addresses snould be set to zero. lhis will urovide
cornpat i 0 iIi t Y 'N i tnt 11 e fl.1 PE. s e gmen t e r •

the niqh order bit ot a tile address often nas special
siqniticance. It may be used to inaicate that tne aodress
is a thread link insteAd of a normal linK. It may oe used
to indicate the end of a list. It has various uses, whiCh
snould oe carefully considered when interpretinq any file
address.

the address zero has special significance. It is the null
address. NO pointer ever points to record zero.

1-'lle addresses are often relative to some location in the
file. The starting adoress ot tne information block is
normally used as tne base address. The value at a relative
address (even if it is zero) is added to tne base adaress
toob t a inan act ua I f i 1e add res s. Ttl e h i q h- 0 r de r [) ito t d n
aadress Should not be involved in this calculation, since
it nas special interpretations. It should be set to zero
in both the base and the offset hefore adainq. It is
essential always to consider Whether an address is aosolute
or relative. This ae~ends on the context in ~hlCh the
dddress occurs.

In symbolic torm, tile addresses are represented by two
octal numoers. The first is five digits in lenqth, ana
specifies the record num~er. The secone is three dlqits in
length, and specifies the oftset to the desired word in the
record. These two numbers are separated by a blank. If
tne high-order oit of an dddress 1s on, then '(1)' is
prepencJed to the five-digit record number. (If in the
given context toe high-order bit has no signiticance, tne
'(I)' may be omitted.)

C-02.13

3.3. Record zero
~---~~--~--~-~--~

~ecord zero occupies the first record of a USL tile. It
contains pointers and counters essential to interpreting
the reffiainder of the file. Table 3.3 lists tne contents of
record zero 1n oroer. A name is given to each field which
is used as a convenience in referring to the field.

Table 3.3 -- USL File Record Zero Contents

Wordls) Name Contents
---~~~- ------ ---------------------------------~

u the constant #1# apparently
identifies the file as a valid USL
file

1 NDE number of entries in the directory

DL the directory
(number of
already been
garbage)

length, in ~ords

words whiCh have
allocated; includes

list head for the blOCK data list

list head for the segments list

length ot the entire USL file, in
words

number of words of DL whiCh are
'garbage'

garbage

available
be equal

the interrupt

directoryof

list head for
procedure list

number
entries

start address of
directory space (should
to 00001 000 + DL)

3 DG

4 NDGE

5 BOL

b IPL

7 SL

ij,9 FL

10 SAAD

11 ADL available
words

directory length, in

--------~~--------------------------------------~--

c-a2.14

table 3.3 -- USL File ~ecord Zero Contents (cant.)
-~--~~~--~~----------~-~---------~~----------------
~ordls) Ndme Contents

t 2 , 1 3 SAIB start
block
AUI,J

address ot the Intormatlon
(should be equal to SAAD t

14,1~

1b , 1 7 SAAIH

18,19 AIBL

20,21 IBG

22 N IHGf:

23-3~

33-127

lenqtn ot the information olocK,
in woras (number of words which
have alreaoy been allocated;
incluoes garbage)

startinq address at the availaole
Infornlation block space

lenqth in words of the available
intormation blocK

number at words of IBL which are
'garbage'

number of Qarbage information
olock entries

apparently reserved; should always
be set to zero

hash list heads

--~-----------~-~-_.--~------------~------~--------

The use at many of these fields will be explained in
subsequent sections of this paper. The use of others is
indicated In illustration 3.3. This illustration labels
various locations and areas In a USL file with the names
assi~ned to the fields ot record zero which refer to those
portions of the USL file.

C-02.1S

~~-~-~-~~.-----~~~~~-----~-----~---------~-~~--~~~~--~--~~---

00001 000 -->

SAAU· -->

SAIB -->

SAAIB -->

Record 2ero

In-use and
Garoaqe

Directory

&\vailaole
Directory

Space

In-use ana
GarDa~e

Information
elOCK

Available
Information
BloCK Space

129 \.lIordS

DL words

ADL words

IBL words

AlnL words

fL -->

~----------~.------------------~---~------------~-----~------

Illustration 3.3 -- Use of Record Zero Fields

3.4. The directory
---~----~------~~--

The USIJ file directory contains all information needed to
process and manipulate information contained in the
information block. A qreat variety of items dre found in
the directory, but they are edsily classifiea into distinct
groups. Tne elementary airectory data item is the -entry.­
the ddta structures tormed trom entries are familiar sorts
of trees and linked lists. Several implementation aspects
of the directory, ~hich dO not conveniently tall into any
other section, are listed Delo~:

1. the directory begins at file location 00001 000.

2. Each directory entry consists ot some number of
contiquous words. ~:rlt r ies are not, tlo~ever,

necessarily cortiguous within the rlirectory. That
is, there may be some unused space bet~een entrles.

3. file recoro Dounaaries are
the directory. Entries may
freely.

not recoqniZet1 wltllin
span record [)oundaries

4. All pointers to entries in the directory are
absolute pointers. It the pointer is contained
v; i t h i n r ec.o r d ze r 0, 0 r wit n i nthe air e c tor y itself ,
it is a single ~ord, and not a douole ~ord,

pointer. (See section 3.2.)

5 • A11 poi n t e r s tot ne 1n for ill;:) t ion 0 10c k. ~ hi c n are
contained in tne directory are douole worn
pointers. All SUCh pointers arp. rel~tive to ~Alb.

(See sections 3.2 dnd 3.3.J

The entries contained in the directory are reldted on
lists. lhp.re dre only eiqht types of entries, and only tour
types of lists, allot wnich are descrined in aetail in the
following SUbsections.

3.4.1. Directory lists

The four types ot lists in the airectory are as tollows:
tne interrupt procedure list, the segment list, the oioCK
data list, and the hash lists. Eacn of these tour is
discussed in a separat~ sUbsection belolf.'. with eacn
subsection is provided an illustration of the list
discussed.

For every list in the directory, tner~ is a certain type ot
entry, or there are certain types ot entries, whicn are
inclUded on that list. with the exception ot the hash
lists, only entry types appropriate to the list may be
placed on tne list. All entry types dre appropriate to tne
nash lists. Entries may be included only on lists tor
~hich they are appropriate.

Every entry is on exactly two directory lists. It is on
one, ana only one, ot the block data list, the interrupt
procedure list, and the segment list. It is also on one,
and onlY one, of the hash lists.

C-02.17

3.1.1.1. Tne interrupt procedures list
-~-~-~~--~-~-~--~~~------~~-~------~~-~-

The lnterrupt proceaure 11st (·IPL·) is a linear linKed
list. Its list head is IPL in record zero lsee 3.3J. All
interrupt procedure directory entries are on tnis list.
~ntries are linkea together oy their orother pointers, with
a linK of zero termlnating the list. As of tnis writinq,
no further information is available about tne IPL directory
list.

Record
~ero

IIPL

, Int. Peac.
Entry

I b 1

,. Int. Prac.
Entry

I b 1

" Int. Proc.
Entry

I 0

I
I
I

-~----~-----~---~-----~---------------------~-~~---~---------

Illustration 3.4.1.1 -- Interrupt Procedures List

C-02.18

3.4.1.1. rne bloCK data list
---~---~~-----~----~-------~-

fhe clocK data list ('~DL') is a linear linKed 11st. Its
list nedd is BDL in record zero (see 3.2). BLoCK data
suoprogrdms qen~rdte block data ~HM·S. All blocK odta
directory entries are on the 6&L directory list. They are
linKed toqetner by their brother pointers, with a linK of
zero terminatinq the 11st.

Hecord
Zero

IBL>L

BlK. Data,
Entry

I nl

,
Blk. Data

Entry

I bl

,
Blk. Data

EntrY

I 0

t,
I
I

•,
I
t

------------~~---~-----~-~-----~--~---~-------------------~~~

Illustration 3.4.1.~ -- Block Data List

C-02.19

3.4.1.3. The segment list
~--~-----------~-~-----~-~

The segment list is really a tree. The pointer to the root
of the tree is SL in record zero (see 3.2J. The following
three types of entries are found in the tree: segment
entries, KHM entries (whicn may be either primary outer
bloCK or primary procedure type entries), and secondary
entry point entries (which may be secondary outer block,
secondary procedure with parameters, or secondary proceaure
~itnout parameters type entries).

The segment entries do actually form a linear linked list,
with SL in record zero as the list head. They are linked
bY their brother pointers, witn a link equal to zero
terminating tne list.

A segment entry may have zero or more sons. The immediate
sons of a segment entry must oe RBM entrles. The son
pointer of a segment entry points to the segment entry·s
tirst son. All the sons of a given segment are linKed in a
linear list by their brother pointers. This family list is
terminated by a link with its nigh-order bit turned on, and
",hich points back to the parent segment entry. for
example, it a segment entry is located at 00033 027, then
the link terminating the tamily list would be (1)00033 027.
If this seqmerlt entry had no sons, then the segment entry's
son pointer would be (1)00033 027.

Each RBM entry may also have zero or more sons. The sons
of an HBM entry are secondary entry point entries. The son
pointer ot an RBM entry is analogous to tne son pointer ot
a segment entry. It points to the first son, and other
sons are linKed into the family by their orotner pointers.
Aqain, the tamily list is terminated by a link with its
high-order bit turned on, and ~hicn points back to the
parent RBM entry. If an H~M entry has no sons, then its
son pointer points to itselt, just as in the case ot
segment entries with no sons.

fhe links terminating family lists in the segment list are
referreo to as 'thread' links, since they reter oack to the
root of the SUbtree in wnich a node is located. The son
relationship is defined only from segment to RbM entries,
and trom RHM to secondary entry point entries. The brother
relationship is defined from segment to segment, from HaM
to RBM, and from secondary entry point to secondary entry
point entries. The tather relationShip is defineo from RHM
to segment, and from secondary entry point to RH~ entries.
Tne tree is thus a lett-son/right-siblinq, threaded tree
data structure.

C-~2. 20

Hecord
Zero

I SL

,
, Segment

t:ntry

bl 1 rs 1 *

~

Seg:nent,
~ntry

0 I r 5 1

,
, k8t-1

intrv

h1 1 I 51*

,
,

kB~'

Entry

01*1 I s 1

Secondary,
Entry Pt.

·51- = son linK h1* I
·01- = orother link

t
I
I
I

•,
•,
I
I,,
I,
I
I
I

-*- = link. is d

threao linl<

-~------~-----~----~-----~~~-------------~--~--------------~-

Illustration 3.4.1.3 -- Segment List

C-02.21

3.4.1.4. The hash lists
---~--------~--.-----~--

To facilitate quick access to directory entries by name,
every directory entry is also placed on a hash list. USL
tiles use ~5 hash lists, the list heads of ~hich are in
record zero (see 3.2). EaCh list head is a sinqle word
absolute pointer into the directory. Directory entries
~hich hasn to the same list are linked to each other by
their hash links (see 3.4.~). Each of the 95 hash l1sts is
thus a linear linKed list. A zero linK terminates a nash
list. Hashing a name produces an inteyer between 0 and 94,
inclusive, ~hich is used as an index into the 95 naSh list
heads to access the hash list on which the entry referred
to by toe name is located.

entry should always be added to a hash list nearest to
hash list head. That is, the hash list head should be

to point to the entry, and the entry's hasn linK to
to the entry formerly pointed to by the nash list

An
the
maae
point
head.

The MPE segmenter refers to the 'index' ot an RBM, or
directory entry. This is a reference to how recently the
entry was added to its hash list. The most-recently added
is indexed one, the next-most-recently is indexed two, and
so on. "Least-recent" on any given list refers to the entry
on the list with a hash link equal to zero. When the MPE
segmenter refers to the index of an entry, only the entries
of a given name are considered. The entire list is not
relevant. The index zero nas a special meaning. It refers
to the most-recent active entry having the given name on
the hash list (active/inactive entries are discussed in
the MP~ segmenter reference manual).

C-02.22

---~._~~-~------~-----~~--~~~~-~-~----~----~-~-~-~~~-~~--~---

~aSh List Hea~s in Hecora Zero

Entrv

t
I
I
I
I

•

Entry

HLH••

o

•

~:n t r V

Entrv

Entry

(]

EntrY

Entry

-ni- = nash linK
-HLH- = Odsh list heaa

o

~-~--~---~--~~---~-------~--~~-~--.--------------~---~-----~-

Illustration 3.4.1.4 -- Hasn Lists

C-02.23

3.4.2. Directory entries

In this section, all eight entry types found in the
airectory are presented. All entries have some tields in
common, which together torm a standard directory entry
prefix. Included in this prefix is a name field, giving
the name associated with the entry. 'PI' Is used to denote
an integer pointer whicn points to tne word immediately
tollo~ing tne last word used by tne name field.
Illustration 3.4.l shOWS the layout ot the pretix. The
contents of the prefix are described in table 3.4.2A.

Table 3.4.2A -- Directory ~ntry Prefix Contents
~-----~~-~~~~--~---~~~---~---~~--~----~-------~----
Field Contents
----------- -~~~--~-~----------------------------~

P(O).(1:10) number of words in this entry

P(O).(11:5) type of this entry; types have
following designations:
1 segment entry
2 primary outer blocK entry
3 secondary outer block entry
4 primary procedure entry
5 secondary procedure entry, without

parameters
6 interrupt procedure entries
7 bloCK aata entry
8 secondary procedure entry, with

parameters
Other entry types are undefined

pel) the entry's hash link (see 3.4.1.4)

P(~) tne entry's name field

PI(O) the entry's brother link

-------~----~--------------------------------------

1
o I Number ot ~.. ordS in ~.. n t ry I t::ntrv Type

it d S tl LinK

* Ir~ arne Lenqtnl

Name of Entry

firother LinK

* See Table 3.4.2B

--~~-----~---~~-~~~-~---~----~~----------~------~~----------~

Illustration 3.4.2 -- Stdndard Pretix

The ~(~).(O:4) field (that is, tne first nibble of the name
field) has important uses. The interpretation at this
tiela oepenas on entry type. fhese interpretations dre
given in taole 3.4.~A.

Taole 3.4.28 -- Interpretation of P(2).(O:4)

Entry Field Interpretation
----- ---~- ---~--------~--~---~--~---~--------~-

1 0:1 shows whether entry is active or not
(" '=inacti ve)

1:3 reserved; should be set to zero

2 0:1 shows whether entry is active or not
C'1'=inactive)

1:1 shows whether entry is callable
('1'=uncallable)

2:1 sho~s whether proqram unit must
execute in privileged mOde

3:1 reserved; snoulo be set to zero

C-02.25

Table 3.4.2B - Interpretation of P(2).(O:4J (cont.)
-----~-~~~-~-~-~-~---~--~~---~----~----------~-----
Entry Fie!d Interpretation
-~-~~ ~---~ ------~----------------~---~---------

j 0:1 shows whether entry is active or not
(-l-=lnactive)

1:1 shows whether entry is callable
(-l-=uncallable)

2:2 reserved; snould be set to zero

4 0:1 shows whether entry is active or not
(-l-=inactive)

1:1 shows whetner entry Is callaole
(-1-=uncallable)

2:1 shows Nhetner program unit must
execute in privileged mode

3:1 shows whether entry is nidden

5 0: 1 Shows whether entry Is active or not
(-l-=inactive)

1:1 shows whetner entry is callaole
(-t-=uncallable)

2:1 reserved; should be set to zero

3:1 shows whether entry is hidden

b 0:1 shows whether entry is active or not
(-t-=inactive)

1:2 apparently an interrupt procedure
type number

3:1 reserved; should be set to zero

-----~~----------------~------------------~---~----

C-02.26

I'aole 3.4.2B - Interpretation of P(2).(O:4) lcont.)
~--------~----~--~--~--~--~------~-~-~-~---------~-
~nt[y field lnter~retation

----- ~~--- -----------~---~-----~---~-----------

u:1 shows wnether entry is dctive or not
(·l·=inactive)

1:1 set if fatdl error in bloCK data RuM

2:1 set if non-fatal error in bloCK data
J-<tiM

3:1 reserved; should be set to zero

0:1 ShOWS ~hether entry is active or not
(·l·=inactive)

1:1 shows whether entry is callable
(·I·=uncallable)

2:1 reserved; should be set to zero

3:1 shows whether entry is hidden

In the sUbsections of this section all entry types are
expldlned. A dlagrarn ot most types is presented to
illustrate the format of the entry. Mention will often oe
marte of "parameter information blocks," "header
information blOCKS," and "hedder information sets" (·~lb·,

·H18·, ana ·HI5·, respectively). HIB and hIS are described
in 3.4.3, and so are not further discussed nere. A ~lB

provides the calling sequence of a proqram unit. It will
always in illustrations be drawn as a single large area,
but tne reader should keep in mind that it is really
comprised of one or more words, ana is thus a variable
length tield. ·P2· is used to denote dn inteqer pointer
pointing to the word immediately following the PId.

3.4.2.1. Seqment entries
-------~~-~~-~------~----

for segment type directory entries, only a single word is
appended to the standard prefix. Tnat Nord contains the
son link at the entry. (The significance of a son link is
discussed in 3.4.1.)

C-02.27

Standaro Directory Entry Prefix

Son LinK

-~-~--~~----~---~-------~--.--~~-~-~-------------~---~--~----

Illustration 3.4.2.1 -- Segment Entry

3.4.2.2. Primary outer bloCK entries
--~-------~---------~----~--------~-~

A numoer at fields follow the standard prefix in primary
outer bloCK type directory entries. They are described in
t~ble 3.4.2.2. In this table, 'p' is assumed to be an
integer poirlter to the word at tne entry immediately
following the standard prefix. Each field 1s given a name
to simplify reference to tne field in this paper.

TaDle 3.4.2.2 -- Primary Outer BloCK Fields

field Name Contents
----------~ -------- ---~---~--~-------~~-------~--

P(O) SOHL son link of the entry

PCl) PUSA program unit starting address
(address wjthin the code
module ot the entry point)

P(2),P(3) SAC starting information bloCk
file address of the code
module (this address 1s
relative to SAIA; see section
3.3)

P(4).(u:l) ~RROR set if program unit contains a
fatal error

P(4).(1:1) WAHN set if proqram unit contains a
non-tatal error

-~~--~~~--------~--~--~-------~--~----------~-~----

C-02.28

faole i.4.~.) -- Primary Uuter KloCk F"ielrls (cont.)

~ield Name Contents
---~~-~-~-- --~----~ ---~--~-~------~~~-~--------~-

Pl 4) • (1. : 14) CUu .. (,~: r~ n lA fP 0 erot ,. n r <1 s 1 n t n e 0 b i e c t
code mooule

S1AC~~Sl an estim~te of
\'words of striCK

PIOqram unit

t r, e rllJ IT, b €I rot
nee <i e <1 n y t t) e

P("1) SDh

TRe Lt':~

t rle n lJ IIIC erot w0 r"; sot p r i nla r y
LJ t.~ all 0 c r=t ted by t tl i s pro a ram
unit

the nu~npr of warns ot
secondary UK allocdtea oy tnis
program unit

r. u mher 0 f W0 r d sin d t ~ t) 1e
IJ s e (j t; Y T t< ACE / 30 (I 0

P(y)

pll0) to
end of entry

DArAL~_:N numoer ot words in secondi1ry
Db reserved oy nATA (l-'iJHj'H~"')

or UWN (SPL) declarations

heaaer inform~tion bloCK tor
tne prO\.lram unit

SOH a noD A'f AL 1:: N are not t tl e s anI e ttl i nq • t) ATAL E: N ret e r 5 t 0

the number of woras in a "secondary Db arr-iY. Assoclateu
with eact, program unit is an dred ot secondary Ub S~dce.

T his are a inc 1 udes 5 U C h t t) i ngsa s t ne F (J HT k Ar~ loy i Cd 1 lJ nIt 5

taole, format strinqs (tnose referenced if} a rer=to stdtempnt
and con t a i n i n q , H' s p ecit i Cd t ion 5 fl. U s t bey lob a I 1 Y I 0 C d ted ,

to retain tneir values), own/data variaoles, ClntJ the liKe.
Jncluaed in OATALEr.. is ollly that amount ot stordae to ne
allocated for own/data variahles--this portion of the
sec 0 ndar y l) H S tor aye a 11 0 cat e d by apr 0 q r d 01 un i tis
referred to as the secondary DB array. (he followinq are
not included in DATAL~~~ or SDd: the ~'ORTRAN logical units
tab 1e , TRAe E/ j 0 0 0 tab 1e s , and coni m0 n a r ray s • SLJ H doe s
include the number of ~oros used by globally located tormat
strings.

C-02.29

Son Link

Program Unit Starting Address

Start Address of Code Module- (Flel.ative SAlb) -to

* 1** I "'u:nber \'4ords in Code ~'Odu le

StacK ~stimate

Number iPvords lJrimary Db

N\Jmoer ords Secondary DJ.\

TkACl::/J\lOu Table Length

Numoer words of Own/Data

• Error ** .~arning

-~~~~~--~~---~--~~~-~~---~-~---------~-------------~~~ -------

Illustration 3.4.2.2A - U.h. and Proc. £ntries dody

fhe first ten ~ords ot this entry are shown 1n illustration
3.4.2.2A. Tne format ot primary block entries as a ~hole

is sno~n in illustration 3.4.2.2b.

------~~---~-----------~-~-~----~---~-~-~~--~--~~-~-~--------

Standard Directory Entry Prefix

Outer BloCK Entry ~ody

(see Illustration 3.4.2.2A)

Header lnformat i.on Block

-------~-------~---~----------~-~----~---------~~------~-----

111ustrdt1on 3.4.2.2h -- Primary Outer HloCK Entry

C-02.30

3.~.2.j. ~econdary outer bloCK entries

unly a single word is appended to the standard prefix for
seconddry outer olock ty~e directory entries. This ~ord

inOlcates the location of the entry point in toe code
mOdule dssociated witn the parent directory entry. Ihe
~ord is given as a ~ord-ottset trom the beqinning ot the
code ·module, ana so fs analoqol1s to PlISA, described in
J.4.2.:l.

-~-~~----~--------------~--~--~-----------~-----------~----~-

St~ndarn uirpctory Entry ~r~tlx

Pro~ram ~nlt Startinq Address

---------~----~--~-----~--~~---~-----~~-~-~~-~---~---~-~-----

Illustration 3.~.2.j -- ~econdary Uuter BLoCK ~ntry

C-02.31

s tanddr ~J Jirectary ~ntry prE'flX

Primary Procedure Entry body
(see Illustration 3.4.2.2A)

Parameter Intormation BloCK

Header Intorm~tlon BloCK

3.4.2.4. primary procedure entries

~riffidry procedure type directory entries appena to the
standard prefix exactly the same information as is appendea
by primary outer blOCK entries, ~ith one exception.
aet~een UATAL~N and the neader information block, a
parameter intormation bloCK is inserted.

3.4.2.5. Secondary proceoure ~ithout parameters entries
~~-~-~~--~----~-~-~-~~~----------~-~----~------~~-~~--~-

The secondary procedure without parameters directory entry
type appends to tne standard prefix only a single ~ord.

This ~ord contains the aodress of tne entry point to the
code module associated with the Pdrent entry. l'he address
is a ~ord-offset tram the beginninq of the code mOdule, and
so js analogous to ~USA, described in 3.4.2.2.

•,
I
I
I
I
f,,,,
t
I
t

J.
I
I
I
t
I
I
I

-~----~-~-~--_.~-~-~---------~--~~--~---~---~~~---~----~----~

Illustration 3.4.2.4 -- Primary ~rocedure EntrY

C-02.32

---~-~-----~~----~-~~~-----~--~--~-~----~~--~~-------~--~~-~~

Stand~rd Directory ~ntry ~r~tix

Program Unit Starting Address

-~~------~-~--~---~-~-~--~----~~---~-~-----------------------

Illustration 3.4.2.5 -- Sec. Procedure, No Parms., Entry

3.4.2.b. Interrupt procedure entries

------~-------------~------~------~--

After the standard prefix, interrupt procedure type
directory entries append tive wordS. Tnese five words are
followed by a header infornlal1on block. Ihe proper
interpretation of the five waras has not yet oeen
determined.

3.4.2.1. ~lOCK data entries

-------------~--------------

A DlOCK data type directory entry appends after tne
standard prefix d number Of SUbentries. ~ach subentry
contains information for one blOCK of common. (As far as
the seqmenter is concerned, every olocK ot common is named.
The name "CUM-" Is used to refer to olanK common.) there is
no explicit indication of the number of sUbentries present.
This must be deaucea trom tne SUbentries themselves, and
from tne number of words in the entry as a Whole.

The first ~ord of a subentry gives tne numoer of words in
the common block. following this is a name field qivinq
the ndme of tne com~on blOCK. beqinninq in the word
immediately following the name tield, tnere is a header
information blOCK for the SUbentry. Thus, in d manner ot
speaKing, the common OIOCK name and length are prepended to
the relevant header information blOCK.

C-02.33


~~~---~-~-----~--~----~~--~~--~---~~-------~-~--~---~--------,,
t

Number ot ~oras in. Com;non BloCK

0 I Name Len I
Name of Common bloCK

Header Information Block

---~~-~~-~-~-~----~-----------~~----~-----~-----~--~---~--~--

Illustration 3.~.4.7A -- BloCK Data Subentry format

----~---------------.------------~-_._---~~----------~~----~-

Standdrd Directory Entry Prefix

~locK Data Suoentrv

Block Data SUbentry

•
•
•

---~~------~-------------------~-------------~-~--~--~-------

Illustration 3.2.4.7B -- block Data Entry format

C-02.34



-----~-----~---~------~~------~------------~--~--~-~-------~-

Standard Directory Entry Pretix

Program Unit Starting Address

Parameter loformation Bloc~

----~-----~----------~~--------~-..----~----~----~----~-~--~-
Illustration 3.4.2.8 -- Sec. Procedure, with Parms. Entry

3.4.2.a. secondary procedure with parameters entries

-----------------------~-------~----------~-----~----

One word, and then a parameter information blocK, are
appended to the standara prefix in secondary proceaure with
parameters type directory entries. The word placed between
the prefix and tne PIB contains tne address ot the entry
point to the COde module associated ~itn the parent entry.
th1s address is given as a word-oftset from the beginntng
of the code module.

3.4.3. Header information blOCKS

-------------~------~------------

In a USL tlle in MP~, a -header- is an entry in the
1ntormation blocK of toe file which provides information
necess~ry for relocating a program unit, and for binding it
with other proqram units. The various types ot headers
whicn are possible are discussed in section 3.5. In this
section, tne neader intormation blOCKS tound in directory
entries are oiscussed. HIR-s are used to provide
information about the number, ty~es, and lengths ot headers
associated with a directory entry.

A neader information blOCK is divided into header
1ntormat1on sets. Eacn HIH is a ~ore or less distinct
entity. Any number ot header intormatlon sets (including
zero) may be included 1n any header information block.
There 1s no explic1t Inaication Of the numcer of header

C-02.35



information sets are in a header information block. this
must be deduced from the HIB itself, and from the number ot
~ords in the airectory entry as a whole. A •• 15 begins with
a word which specifies In its (1:15) field the number at
'hedder descriptor words' that are present in the HIS. The
(0:1) tield at this word is set to zero unless tnis HIS Is
the last HIS of the rll~. In this case, (0:1) 1s set to
one. This word is tollowed by a double word file address
which is relative to SAIH (see 3.3). This address points
to the tirst word of the ot the first of the actual headers
corresponding to the hIS. (All headers corresponding to a
yiven rllS ffitist be contiguous in the intormation bloCK. See
section 3.~.)

In the tnird and tollowing words of a HIS are header
descriptor words. There is one descriptor word for each
neaaer associated with the HIS, and tne descriptors are in
the same order as the neaders themselves in the intormation
bloCK. A header descriptor has only tnree flelds. Tne
first, (0:1), is unused, and should be set to zero. roe
second, (1:10), gives the lengtn of the associated header
in ~ords. (The lengtn of headers is tnus limited to a
maximum of 1023 words.) The third, (11:5), gives the
number of the type ot th~ header. Header type numbers are
presented in section 3.S.

3.5. The information area

The intormation bloCK in a USL file contains all header
entries. All addresses in the directory which refer to the
information blOCK are relative to SAIB (see 3.3). Because
of thiS, the entire information blOCK may be moved up and
down in the file, changinq only a few fields of recora
zero. Record boundaries are not recognized in the
information blOCK, but it Should nonetheless begin on a
record boundary.

3.~.1. Code modules

A code module is a special sort of header. It has no
associated header descriptor word, it may be lonqer than
the normal maximum of 1023 words, and it is never
explicitly included 1n any HIS (see 3.4.3). It may,
however, oe placed any~here within the headers associated
*ith a HIS. The starting address ot the code mOdule, SAC

C-02.36



(see 3.4.2) must be used to detect the presence of the code
while sequentially processing tne headers. It tne coae
mooule is not needed ~nen detected, it may simply be
SKipped. It is, as are all neaders of d sinqle HIS,
c on t i y u0 uS 'N i t h tl 0 t h the prec edin g l i fan y) dna toll 0 Ii 1 nq
(it any) headers.

The code module contains for tne most part finished code,
reddy to be placed into a progrdm. Tnere can be many
exceptions to this, however, depenaing on otner neaders
associated with directory entries associatea ~ith tne code
module. There are varlOUS linear lists dnd relocatdole
addresses 1n the code module itself which are used by these
other headers. the relevant lists and addresses will be
discussed oelow together wltn the appropriate neaders.

3.5.2. Information headers

-----~~-~------------------

There are twelve types ot information headers. They are
numbered as tollows:

o null (d garbage header)
1 peAL, LLBL, or program unit PB address
2 PB address
3 own/data variable (for address correction)
4 secondary DB initializations
5 a taole for TRACl/3000
6 variables declared GLOBAL
7 variables declareo ~XTERNAL

8 primary DB declarations and initializations
9 common (accomplishes only address correction)

10 FO~TRAN logical units
11 glObally located formats

These numbers are used in header descriptor words. (Header
descriptor words ~ere introauc~d In section 3.4.3.) ~very

header begins with a header descriptor word ~hich descrlbes
it. The tormat of these descriptors is as follows:

(0:1) reserved, should be set to zero
(1:10) the length ot the neader in tfords
(11:5) the number of the neader type

Although all headers begin with a descriptor word, each is
thereafter highly indiVidual. Each type is describea in a
separate sUbsection below.

All of the headers associated with a qiven HIS must be
contiguous within the intormation blocK. The directory
gives only the tile address of the first word ot the tirst
header of any HIS. It the neaders are not contiguous, it
~ill not be possible to locate them in the tile.

C-02.37



3.5.2.0. Null headers
~-~--~~~------~--~--~-

A null neader is a garbage entry. It simply taKes up as much
space as indicated in the header descriptor word. It has no
siqniticance to the program unit with ~hich it is associated.

3.5.2.1. PCAL headers

---------------------~

peAL headers provide all information needed to link the
prOqrdm unit to external program units. It actually has
tnree functions, as follows: to make PCAL patches, to maKe
LLBL patches, and to make procedure PB relative adaress
patches. It is structured as indicated in table 3.5.2.1.

Table 3.5.2.1 -- PCAL Headers

---~----------~-----------------------------~---~--Field Contents

----------~ -----------------------------~--------

P(O) header aescriptor word

P(l) word otfset into code module to the
first word of a linked list ot
references to the program unit
described in the header; each word in
tne list in the code mOdule has the
following format:
.(0:1) O=patch In a PCAL instruction,

l=patch in an LLBL instruction
.(1:1) O=patch as indicated by .(0:1)

l=patch in PB relative address
ot the proqram unit

.(2:14) link to next list item (this
is a self-relative backwards
pointer; the list terminates
with a zero pointer)

P(2) a name field, giving the name of the
external program unit (P(2).(O:4) is
unuse~, and Should be set to zero)

PI tOlloW~9 the name field
parameter information block

is a

------------~--------------------------------------

C-02.38



3.5.2.2. PB address headers
~~--~----------.-~--~--~----

This header provides a means of patching words in the
program unlt which contain PH relative addresses. After
the header descriptor ~ord, the neader is simply a series
of pointers, each ot which is a word-offset into the code
modUle. (The number ot tnese pointers must be deouced from
the lengtn of tne header as a wnole.) In each word in the
code module thus pointed to, the compiler must place a Pti
relative address. This address will be corrected by the
MPE segmenter at prepare time by adding to it the PB
relative address of the tirst word of the program unit.

3.5.2.3. Uwn/data head~rs

--------~--------~_.~-----

At compile time, the run time address of an own or data
variaDle is not known. It is assiqned at prepare time.
l'heM PI:: seqmen t e r sol ve s t his prob I em by r e qui r ing ttl e
compiler to place in the COde module a pointer to tne
variaole. This pointer ~ill ot course then be part ot tne
code at run time. The compiler initializes tnis pointer to
the otfset into tne program unit's secondary Drl array
assigned oy the compiler to tne variable. At prepare time,
the segmenter will ddd to this value the DB offset ot ttH~

program unit's secondary 08 array, thereby providing the
code at run time ~itn the correct pointer value.

After the header descriptor word, the entire header
consists of pointers edch of whiCh is d word-offset into
the code module. (The number of pointers must. be deduced
trom the lenqth of the header.) ~ach points to a location
whiCh is to De patched at prepare time. The high oroer bit
of the pointer determin~s whether a byte or a word pointer
is being initialized. If .(0:1)=1, then the contents ot
the code module word specified by the word offset in
.(1:15), and the correction added at prepare time, are byte
offsets. If .(0:1)=0, they are word offsets. (It is
believed that the high order bit of the code module word
pointed to Is also lnterpreted in this way. That is, it
either niqh order bit is on, either in the header pOlnter
or in the cooe module word, then the address is to be a
byte address.)

C-02.39



3.5.2.4. Secondary DB initial values heaoers
~--~--~--~~~-~--~----~-~-~-~-~------~--------

This neader may be used to place initial values into the
program unit's secondary DB array. The word which tollows
the neader descriptor word gives the otfset into the
seconaary DH array at WhiCh the tirst of the given initial
values is to be placed.

The third word of tne header nas two fields. The .(0:1)
field determines ~hether a byte initialization or a word
initialization is to oe performed. It .(0:1)=1, tnen the
second word ot the header 1s a byte offset, and the fourth
wora ot the header is a byte count giving the length of the
initial values in the header. In this case, the initial
values beyin in tne fifth word of the header and continue
for as many bytes dS the fourth woro indicates. It
.(0:1)=0, then the second word of the header is a word
otfset. In this case, the initial values beqin in the
fourth word, ana continue to the end of the header.

The .(t:1~) tield ot the third word gives a replication
factor. The initial values specifiea in the header will be
placed in successive locations in the secondary DB array as
many times as indicated by this field. Thus, if the
initial values are "xxyxx" and the replication factor is 2,
tnen I'xXyxxxxyxx" will be placed into tne secondary D~

array, beginning at the location specified in toe second
word of the header.

3.~.2.5. TRACE/3000 header

This header prOVides lntormation for use at run time by
TRACEI3000. After the neader descriptor word, tnere is a
word pointing to a linked list in the code module. After
tois, beqinning in the third word of the neader, and
continuing to the end of the header, is data which is
believed to be initial values ot some sort. No further
information is available as of this writing aoout this
header type.

C-02.40



3.~.L.b. Global variable headers

1tis po S Sib let 0 dec 1n red vd riab leGJ, 0 b ALi non e pro 9 rani
uni t, E,XTERNAIJ in another, separately compiled program
unit, and have thp. MPE segmenter resolve all reterences to
tne variable. (SPL/jOOO is the only Hewlett Ydckaro
1an 9 uage allow in y ex pI i cit aeel a rat i on 0 t GL 0 ~ A I.. 0 r
I:. X l' E. H~ AI, a t t rib ute 5 • ) ~. 0 11 0 win9 t t\ e ne a de r de 5 c rio tor ~ 0 r d
is d data descriptor word, whlCh qives the type and
structure of tne variable. The fields of tois data
descr1ptor are as follows:

.(0:4) the mOde ot tne variable (O=null, 1=
value, ~=reference)

.(4:bJ the variacle's structure (O=simple
variable, l=pointer, 2=array)

.(10:6) the type ot the variable (0=nu11, 1=
loqical, ~=inteqer, 3=byte, 4=real,
5=aouole, b=lonq, 7=complex, R=ldbel
(J,Jassed :->PI, fashion), Y=chdracter (as
in f' URf HA .\1 I 3 0 ("I 0 ), 10=1db e 1 ( pas sed in
i n fOR T!-{ ANI 3(J (n) f ash ion ), 1 1 =any)

In tne left byte ot the third word ot the neader is tne run
time UB relative dddress of tne vari~ble. (Global storage
adaress assiqnments for primary DH are normally made by a
compiler wnile compiling an outer olock, and are not in any
way relocated by the seymenter.) The .(B:4J tield of the
third word is reserved and should be set to zero. .(lL:4)
contains the lenqth ot the name ot the variable, in oytes.
fhe name itselt beqlns in the lett hyte of the fourtn word,
ana continues for as many -bytes as necessary. Tne name is
alNays an integral number of words in lenqth, ana so a byte
is sometimes wasted.

3.5.l.7. External variable headers

A var1aole declared EXTERNAL is to be matched at prepare
time with a variable declared GLO~AL in some other program
unit. Tne first word ot the header 15 of course a header
descriptor word. The secona word IS a data descriptor
word, wnich has the format aescribed in section 3.5.2.6.
I"ollowinq the second wora is a name tie!<1. The. to: 1) bit
of the first word of the name tield is a 'trace' bit. It
it is on, it indicates that the variable may be traced by
THACE/3000 at run time •• (1:3) is reserved, and should be
set to zero.

It the trace bit 1s on, -then in tne word immediately
following the name tield is an offset into the TRACE/3000
symbol table. If the trace bit is ott, this otfset is not
present.

C-02.41



~'ollowinq tIle name field, and the THACE/3000 symbol table
offset, if present, is d series ot pointers, each ot which
is an offset into the code mOdule. Each points to the
first ot d list at instructions to be patcned witn tne
address of the appropriate GL08AL variable. ~ach of the
lnstructions to oe patcned must be a memory reterence
instruction, since GlJUhAl, variables will al'llays reside in
the prImary C~ area. The address fields ot the
instructIons to bP patched (the right oyte in memory
reterence instructions) serves as the link tield for the
list. Ttle links are self-relative bncKward pointers. EaCh
list is terminated by a zero pointer.

lhele js no explicit indicdtion of the number of pointers
in the hearier. This must be deduced trom the length ot the
neader.

3.5.l.B. Primary DH headers

for the purposes ot the MP~ segmenter, primary Db words are
clnssified into word pointers, byte pointers, and aata.
After the descriptor word in this header tnere is a series
of words, each of which is divided into eight two-bit
fields. All tnese fields, in order ot occurance,
correspond to primary DB locations. The first it tor 08+0,
tne second for DBt!, ana so on. The values of the fields
are interpreted as follows:

o the initial value is not an address
1 tne initial value Is not an address
2 the initial value is a word address which

points to the secondary Dtl area
3 the initial value Is a byte address Which

points to the secondary D~ area
Initial values in the header that are addresses are
relative to the beginninq of the program unit's secondary
US area. The entry, after the array ot two-bit-field
words, contains initial values. There must oe POB (see
section 3.4.2.2) two-bit fields, and PUB initial values.

There may be a slacK word
and the initial values.
values should dlways oe
header. That is, it P is
word of toe header, then
initial value.

between the two-bit-field array
Because of this, the initial

accessed from the end ot the
an integer pointer to the last
P(-(PDH-l}) accesses.the first

~ormally, only an outer block program unit would make use
of this header type. ~on-outer blOCK program units Should
not be allocating primary 08 storage, and the value ot PUrl
for tnem should be zero.

·C-02.42



3.S.2.9. Common variable neaders

The ~p~ seqmenter allocates secondary DB storage for all
common OlOCKS. In order tor a proqram unit to access a
variaole in common, it must use this header. for eacn
common variable referenced in one of these heaoers, the MP~

s e g",en t e r 1ft i 11 a 11 acat e a po 1nt e r i n the p rip!dry Di1 are d ,

ann properly initialize it to point to tne common variable.
~pecitied instructions will be patched with toe address ot
tnis pointer.

Followinq the header descriptor word is an integer which
gives the length in words ot the common blocK to whiCh the
neader applies. Heginning in tne third word is a name
tield, qivinq the name ot the common blOCK to whicn the
he ad er d P P 1 i e s ( b I an I< c 0 rr' rnani snitme d " COM • II ) • The. ( 0 : 4 )
field ot the name tiela is r~served and should oe set to
zero.

He q 1nn i nq in the W0 r dim IT: e d i ate 1y follow i ng the na If. e tie 1d
is a series at variable descriPtors. There is no explicit
indication of the numoer ot variable descriptors in the
neader. This must be deduced from the header's lengtn and
contents. Table 3.S.~.9 gives the format of variable
descriptors.

It must be notp.d that if the trace bit (P(O).(1:1» is not
on, then the displacement into the T~ACE/3000 array (P(2»
is not included. It is simply omitted, and the list hedOS
move up to fill in its place.

C-02.43



Table 3.5.2.9 -- Variable Descriptor ~ormats

~---~---~~---------~~-----~-.--------~~-----~------
fielo Contpnts

~-------~---- ------------------------~------~-~~-

P(O).(O:l) O=D~ pointer 15 to ue ot type worn,
1=01:\ pOlnter is to bP of ty~e byt.e

~(O).(l:l) 'trace bit'; O=varidhle ~ill not be
trac~d oy TRAC~:/3000 Cit run t irne,
l=variable may oe traced

P ( 0 ) • ( '2 : 1 4 ) the nunl b e r 0 f lis t 5 0 fin 5 t rue t ion s
which are to be corrected (there dre
t hIs 0' d n y lis t tH~ dd 5 1ate r i n t tl e
varible oescriptor)

P(l)

P(j)
to

P('2+P.(2:14)}
-or-

P(2)
to

P(1+P.(2:14»

the displacement witnin the common
block of the variable

displacement within a TRACE/JUOO
array ot information about the
variable (NOTt:;: tnis field is
present only if tne trace oit
(P(O).(1:1» is set; otherwise it is
completely omItted)

tne list heads ot the lists of
instructions to be patched; eacn
list head is an offset into the code
module to the tirst word ot a list
(the lists are formed the same as
the code mOdule lists useo by
EXTEPNAL variable headers, descrioeo
in section 3.5.2.7)

~-----~-~~~-~----------------------------~---~-~---

3.S.~.lO. FORTRAN logical units table headers

~---~--------~----~--~--------------~--~------

This header indicates wnich FORTRAN logical units are
referenced by the program unit. The MP~ segmenter will
construct the FURTRAN logical units table trom tne
information contained in FLUT headers. After the header
descriptor word there are exactly seven words. These words
contain a bit map, in which the first bit corresponds to
logical unit numoer zero, the second to logical unit 1, the
third to LU 2, and so on. If a bit is on, the
corresponding logical unit will be included in tne FLur
table at run time. The bits are numbered from left to

C-02.44



rig n t • Tt1 e • 1e t t -III 0 st' Vi 0 r ci i s
nearest to the header descripto[
from 1 to 99, inclusive.

-~~~-~~~-~----~------~---

the
\Norri.

one which occurs
LeeJd 1 LU' s r iHlgC

For n. d t 5 wh i Chi nC 1ude an· H- s pecit i c ~ t ion, and a r ~
ret ere nc e c:t i n d ~ EAu s tat e rr. e nt, nl U S t [) e CJ 100 d 11 y 1 0 C d t. e <1 t a
retain between calls to tne proqram unit values red~ irlto
the -t-t- specification. Tnis header allOws tnat. It
contrlins a formdt striny wnich is to be placed in tne
secondary IJH area.

At t e r the he d de r des c rip tor W0 r ci i s .d W0 r d #i h i C rI ':1 i ve s n
woro otfset into the COde ffiodul~. lhe COde ~ooule ~or~

t tl usind i Cn ted i s ttl e fir s tot d 1 i s t 0 f w0 r d ~ tooe
inItialized at prepare tiffie with the Db relative aadress or
the tor md t s t r i nq. ~.. itt' i ntheli s t 1nthe cod e m0 C1 U 1 e, t f) ~

.(2:14) tield of eaCh me~ber ot tne list is d

s e 1 t - rei a t. i ve , b a CK war d poi n t e r tot n ~ next 1 i s tel P. III f> n t •
A link of zero telminales tne list. It thp .(u:ll tlel~ ot
s U Chac0 d e mod u 1e W0 r dis set 0 n, t ne f' t tl e LJ B reI a t i v f:!

pointer placed into that word is to be a oyte aaaress; it
.(0:1)=0, then the DH relative pointer placed into the cooe
in 0 (J u 1e ~ 0 r dis t 0 ben w0 r d a (1 d res s • Ttl e p u i n t e r p 1d Ce (J

i n tothe \If 0 r d 'Ii ill poi n tat run t i ill e tot hen e q 1nn i nq 0 t
the format strinq.

Tn e ttl i r (1 .... 0 r ci 0 f the ned Cl ~ r q i v~ s the 1e n~ t h, in 0 y t e 5, () t
the tor (f\ a t 5 t: r i n g • The t 0 lJ r t han d f 0 11 () ~ i ng 'II 0 r (15, d S rd d n y
as necessary, contain ttle format string itself.

: ~o~· :

C-02.45


	Papers / Presentations
	Machine Utilization
	MPE Object Code Formats An Introduction to USL and Program Files



