MPE OBJECT CODE FORMATS
Aid INTRODUCTION TO USL AND PROGRA# FILES

Matthew J. Bdalander
The B & b Computer Company

ARSTRACT: The format and management of USL and PRUGRAM files
under the MPE 111 operating system, running on Hewlett
Packard 3000/11 and 30007111 computer systems, are presented

in this paper. USL files are used to store relocatable
binary modules, and PKFUGkAM files to store fully prepared
programs. The presentation is aimed at programmers

implementing compilers on dP30u0 systems. The reaaer is
assumed to bpe familiar with the architecture of these
systems, and to understand basic concepts of relocatable
code, link editing, and so on. The scope of the presentation
is 1ntenaded to provide the reader an aaequate background wilth
whicn to successfully pursue a compiler=-writing project.

CUNTENTS
1, Introduction
1.1 Overview

1.2 Conventions

2. PROGRAM files

2.1 Contents of PRUGRAM files
2.2 Tne fixed area

2.3 The global DB part

2.4 The segments list

2.5 The externals list

2.6 The entry points list

]

files

Contents ot USI files

File addressing

Record zero

The directory

3.4.1 Directory lists
3.4.2 Directory entries
3.4.3 Header information blocks
3.5 The information area
3.5.1 Code modules

3.5.2 Information neaders

wwwwCc
.
o N -

(C) Copyright 1978 by Tne R&B Computer Company

C-02.01

1. Introduction

1.1. Overview

All operating systems adopt <conventions concerning the
formats of object code files. These files must be in
correct formats ¢to be processed by system segumenters,
linkage eaitors, and 1loaders. The MPE operating system
defines four types, or forimnats, of object code files, as
follows: user subprogram libraries (USL’s), relocatable
liobraries (RL°s), segmented libraries (SL’s), and program
files (PROGRAM's), 0f these, RL°s and SL’s have rather
speclalized uses, and their tormats are of little interest
to the compiler writer. The formats of USL and PRUGRAM
files, on the other hand, are of great interest., 1f a
compiler 1is to produce absolute code, it will generate
PROGRAM files. If it is to produce relocatable code, it
will generate USL files.

This paper presents an overview of the formats of USL and
PROGRAM file formats used by MPE 111, on HP300u/1l1 and
HP3000/111 computer systems. It 1is neither exnaustive nor
sCrupulously detailed, Readers with some experience in
object code formats will not tind it ditficult to fill in
aetails not included here by examining USL and PROGRAM
files.

A word of caution to the reader is appropriate at this
point. Hewlett Packard is unco-operative, and seems quite
indifterent to the needs O0f its users to unaerstana MPE
conventions. Because of this, all the information in this
paper had to be deduced from examination of USL and PKOGRAM
files. In consequence, although the author believes the
information included here to be fully accurate as of tne
date of this writing, the reader should keep in mind that it
may nonetheless include some errors. For the most part,
though, it may be used with confidence. The author has
written a compiler which generates USL files based on
section three of this paper, and a PROGRAM file decompiler
based on section two., Both are operating satisftactorily.

1.2. Conventions

A numoer of conventions are adopted to enable concise
explanations and 1illustrations. These conventions are
applied consistently, but occassional, well-marked
ageviations do occur. The conventions are as follows:

C-02.02

SPL/ 3000 notation is used in all cases where
illustrative code is provided.

"P" represents a variable of type integer pointer. In
all taples, jllustrations, and examples it 1s assumed
to point to the first word of the entity under
discussion. .

In the <case o0f single bit fields, "1" is the "on"
state, ana "0" is the "oft" state., Similarly, the on
state is the true state, ana the off state is tne
false state.

ivames in PRUGRAM and USL files, such as procedure or
segment names, are 4 variable number of words in
length, The first byte of a name is always in the
P.(8:8) field, tne length of the name in bytes 1in
P.(4:4), and various context=-dependent information in
P.(0:4), The name continues in 4as many consecutive
bytes as needed, beginning with P.(8:8). A name tield
is always an integral number of words in length. I'he
last byte is thus wasted it the name is an even number
of bytes long. |In illustrations, the P.(0:y) tield
will be diagrammed explicitly, but the remainder of
the name will be shown simply as a large undivided
area, The reader should xeep in mina that this
represents a variable length field. In the text of the
oaper, tnis entire group of fields is referred to as a
"name field," and the various parts are not
explicitly mentionea unless necessary for the
discussion.

In illustrations, when a word is divided, unless
indicated otherwise, it is divided into bytes, or into
niobles. Because of this, no explicit bit tiela

indications are given 1in i1llustrations for byte or
nibble alignea fields.

C~02.03

2. PROGKAM files

The loader in MPE processes PROGRAM tjiles. In & proqgram
tile, all relocatable references have been resolvea, global
storage laid out and initialized, and segmentation
completed. The only link editing remaining to be done is to
establish linkages with external program units to oe found
in SL’s. This last 1linking step involves only the
completion of segment transfer taples, Particular STT
entries have already been assigned to particular externals,
sO no relocation per se need be performed at load tiwme.

PROGKAM files have the following file characteristics:
o Iheir record length 1s 128 words.
o0 They are identified by a file code of 1029,

o the file length 1is bpetween 4 and 32727 records,
inclusive

o The records are tixed length, binary, without carriage
control.

o The file consists of only a single extent.
All tnese restrictions are imposed by the MPE segmenter and

loader., Other file configurations are not acceptaole,

2.1. Contents of PKUGRAM files

A program tile 1s logically divided into five parts, each ot
which must begin on a record boundary. The parts are as
follows:

1. A "tixed area" containing pointers to the rest of
the file, and other miscellaneous information

2. An image of the initial global DB area for the
program, already fully initializea

3. The code segments comprising the program
4, A list of externals referenced by the program

5., A list of entry points to the program,

C-02.04

lhese
listed,

five parts will occur in

I1f a program uses no
DB area vpart of the tile will
parts ot program files begin
aaaresses are used throughout tne file for indicating tne
location of needeag intormation. All record aodresses used
in proyram tiles are single word intedgers.

a PRUGHAM tile in the oraer
global DB storage, the global
pe omitted. Since all tive
on record ooundaries, record

2.2. The tixea area

The fixed area occupies the first one or two records of the
file. The length ot the area, one or two records, depends on
whether or not all the intormation to pe incluaed in the
area ftits 1in a single record, It will always tit in two,
Table 2.2A lists the contents of the fixed area in order.

Table 2.2A -- Fixed Area Contents

Fiela contents

P.(031) program contains fatal error

P.(1:1) program contains non-fatal error

P.(2:1) zero the DB area prior to starting
execution ot the program

P.(3:1) program contains at least one
privileged segment

P.(4:2) (use undetermined, only zero opbserved)

P.(621) program nas NS capapbility

P.(7:1) program has BA capability

P.(8:1) program nas IA capability

P.(9:1) program has PM capability

P.(1021) program has CR capability

Po(11:1) program has RT capability

C~-02.05

Tabple 2.2A =-=- Fixed Area Contents (cont.)

Fiela

P.(12:1)
P.(13:1)
P.(14:1)
P.(15:1)
P(1)

P(2)

P(3)

P(4)

P(5)

P(6)

P(7)

P(3)

P(9)

P(10)

P(11)

P(12)

Contents

program has MR capability
(use undetermined, only zero observed)
program has DS capability
program has PH capability
the number of segments in the program

the number of words in the global DB
area of the program’s run-time stack

beginning record number of the image of
the global DB area of the stack (should
be ignored if P(2)=0)

beginning record number of the segments
list

the 1initial stack size (";STACK=" of
prep command)

the initial DL size (";DL=" of prep
command, zero if ";DL=" not specified)

the maxdata specification (";MAXDATA="
of prep command, =1 if ":MAXDATA=" not
specified)

beginning record number of entry points
list

logical segment number of the entry
points to the program

PB relative address of primary entry
point

execution time DB relative address of a
table used by TRACE/3000 (=1 if table
not used)

execution time DB relative address of
the .FORTRAN logical units table, the
FLUT (-1 {if FLUT not used)

C-02.9¢

Table 2.2A == Fixed Area Contents (cont.)

P(13) beginning record number ot the
externals list

P(14) STl number ot primary entry point
P(195) execution time DB relative address of

TRAPCUM ', a common block wused for
interfacing to user trap routines

P(16) these locations have been opbserved only
to with the value zero--they are probably
P(27) reserved, and should always be zero

S GRS DO TS D TR OSSP T D S AP T W ED ED e U G SE N S TS D eGP A G ER W B W P

Following P(27) are two variable length subareas of the
fixed area. The first begins in P(28), and is P(1) bytes
in length. That is, there is one byte for each segment in
the program. This subarea is always an integral number oOf
words in length, so a bhyte is sometimes wasted on the end.
[t is pelieved tnat the 1loader uses this subarea for
mapping logical segments to actual segments. After a
program has been prepared, but before it has ever been
loaded, tnis subarea will contain all zeros.

The second subarea begins in the word immediately following
the 1last word of the first subarea. The second subarea
includes a one=-word segment descriptor for each segment in
the program, These segment descriptors are in the same
order as tne segments themselves in the file. The tormat
of a segment descriptor is given in table 2.2B.

Table 2.2B =-- Segment pDescriptor Format

Field Contents
P.(021) segment is privileged
P.(12:1) (use undetermined, only zero observed)
P.(2:14) the length of the segment, in words

C-02.07

2.3. The global DB part

The global DB part is simply an 1image of all DB and
secondary DB which is to pe allocated when the program
beyins execution. As many records as necessary are used to
nold the needed number of words. unused words at the end
of the last record, if any, are ignored. [f the number of
words of DB is given in the fixed area as zero, then this
area may be omitted from the file altogether, and the
record pointer to this area in the fixed area may be set to
one (one is the only value tor this pointer yet observed in
this context).

This DB area image is fully initialized. It includes
TRACE/3000 tables, the FLUT table, common blocks, DB and
secondary DB arrays and simple variables, and anything else
whicn must be placed in the DB area. There 1is no
opportunity to add to the DB global area once the program
pegins execution, since it will pe delimited by D8 and the
initial Q register setting. Allowance must be made for all
global run-time storage at the time the PROGRAM file is
generated.

2.4, The segments list

The code segments which comprise the program are placed,
one after another, in the segments 1list. Each segment
pegins on a record boundary, and occupies an integral
number ot records. The actual 1length of each segment, in
words, is given 1in the segment descriptor words in the
fixed area of the PRUGRAM file, Unused words at the end of
the last record of a segment, if any, are ignored,

The code segments o0f a program are often referred to by
their logical segment numbers., A 1ogical segment number
simply gives the position of the segment in the segments
list, The first segment in the segments list is logical
segment number 2zero, the next iIs 1logical segment number
one, and so on. Actual segment numbers, which will be used
in the XCST for the program, are assigned by the loader
when the program is loaded. Segment transfer taobles will
contain the actual segment numbers used when the program
was last loadeada.

There is a one-to-one correspondence between the entries 1in
the segment descriptor words in the second subarea of the
tixed area, and the segments in the segments list. The
first descriptor applies to the first segment, the second
to the second, and so on. The record number of any

C-02.08

particular segment in the file must be deduced from the
segment aescriptor woras. 1f, for example, it were aesirea
to find the second segment, the first seament descriptor
word would be wused to calculate the number of recordas
occupiea py the first seament., This number woula be audageqg
to the record numner of the beginning ot the segments list
given in the fixed area. ‘The resulting recora number is
the first record of the aesired segment.

2.9, The externals list

The externals 1list includes entries for all externals
referenced by the program, For each external it gives the
segment and STT numpers of the program segments to pe
patched with the actual segment and STI numpers of the
external. In addition, a parameter information plock is
incluaed in each entry, whicn indicates the calling
seguence which the program uses to cd4ll the external. This
list is organized as a simple linear 1ist. The list is
terminated by an "entry" with zero in its first word.

lllustration 2.5 shows the format of entries on the
externdals list. Ekach entry begins with a name field. The
P.(0:4) tield of tne name field 1is unused, and should be
set to zero. Following the name field is a word witn tnree
tields, P.(0:4) of this wora should be set to zero. [t is
unused. The use of P.(4:4) is not tully known, but it
appears to be usea by the 1loader to 1indicate how the
external reference was satisfiea, Wwhen generating tne
program file, it should be set to zero. P.(8:8) yives the
number of. references to this external by the program.
{This number shoula never exceed the maximum number of code
segments allowed for a4 single progranm, since a given
external should occur only once in any oagiven segment
transfer table.)

Following the word giving the number of reterences, there
is a one-word reference descriptor for each reference.
This fiela is thus variable in length. P.(0:8) ot each
descriptor gives the segment transfer table entry number
for tnis external 1in a referencing program segment, anha
P.(8:8) gives the logical seygment number of the reterencing
program segment. This entire area is shown as a single
unaivided area in illustration 2.5, but the reader shoulad
keep in mind that it is a variable length field.

After tne reterence descriptors is a parameter information

block. This parameter information oplock is in the same
format used in USL files.

Cc~-82.09

0 Name Length

Name ot External

0 Satisfier Number of Reterences

Reference Descriptors

Parameter Information Block

Illustration 2.5 == Format of kExternals List Members

2.b. The entry points list

The entry points list gives all entries to the program. At

least the name of the outer plock is included in tnis 1list.

All entry points to the program must of course pe in the
same segment as the primary entry point. the logical
segment number o0f this segment is indicated in the fixed
area 1n the beginning of the program file. This list is a
simple 1linear 1list., It is terminated by a list "member"
with zero in 1ts first word.

Members of the entry points list all consist of a name
fiela followed by exactly two words., The P.(0:3) field of
the name field is unused and should be set to zero. The
tirst of the two words following the name gives the P23
relative address of the entry point. The second gives the
segyment transfer table numper of the entry point.

The format of entry points 1list members 1is shown in

illustration 2.0,

C~02.10

0 Name Length

Name of Entry Point

PB Relative Address of Entry Point

STT Numper of Entry Point

Illystration 2.6 ~- Format of Entry Points List Members

3. USL tiles

USL tiles are the princival form of input to the MPE
segmenter. From a USL file with the appropriate contents
the segmenter can generate SL, kL, and PROGRAM tiles.
"Relocatable binary modules"” are stored 1in USL°‘’s.
Segmentation, global ana secondary DB address assignments,
external procedure reterences, PB relative reterences, and
the 'like have not yet been resolved in these tiles.
Although USL files constitute the most complex form of
compiler output on HP3000 computer systems, they are also
the most tlexible, giving the user the most options.

USL files have the following file characteristics:
o Their record length is 128 woras.
o They are identifjea by a file code of 1024.

o The file 1length must be from 4 to 32727 records,
inclusive,

0 Records must be fixea-length binary, without carriage
control.

These restrictions are imposed by the MPE segmenter.

Unlike program files, USL files may be composed of any
number ot extents.

C-02.11

3.1, Contents of USL files

PO PO P OROERD BT S NSO ®® e

A USI, file is logically divided into three major parts,
each of which must begin on a record boundary. The parts
are as follows:

1. "record zero" containing pointers to the rest ot
the tile, 1list neads, and other miscellaneous
intormation

2. the "directory" containing one entry for every kiM,
segment, ana entry point in the file

3. the "information block" containing all information
headers and code modules.

These tnree parts always occur in the order specitied, and
are of a tixed length in any given file. Tnhis lenygth may
vary from file to file, but within any one file, the
boundaries are <clearly adetined by 1nformation in record
zero. Record zero is always simply the first record in the
USL file.

The directory always begins with the second record of the
USL tile, at file address 00001 000 (see 3.2 for a
discussion of file adaressing). The information block
always begins at a file -address specified in record zero.
in both the directory and the information block,
information 1is placed in successive contiquous locations.

Record boundaries are not recognized. If any entries or
neaders are deletea from either ot these two areas, the
space they formerly occupied 1is not recovered. It is

referred to as ‘“garbage," and 1is never used again.
Nnever-used directory space is referred to as "availabie"
directory, and never=-used information bloCK spdce as
"avajilable" information.

An intrinsic named ADJUSTUSLF, documented in the MPE
segmenter reference manual, may be used to expand the
directory or the information block as desired, The
directory, however, may not exceed 32K words, and the file
may not exceed a total of 32K-1 records.

A USL file may be initialized to the empty state via the
intrinsic INITUSL. Tnis intrinsic is documented in the MWMPE
segmenter reterence manual.

In total, then, a USL file consists of the following five
parts, in this order: record zero, in-use directory,
available directory, in-use information, and available
information, These areas are delimited by pointers and
length values kept in record zero.

C-02.12

3.2. tile addressing

W TGN S EGENT TS W -

It 1s appropriate at this point to discuss USL file
addressing. Locations witnin a USL, file are 1dentified by
specifying the word within the file whicn is ot interest.
The tirst word in tne file is word number zero. Seven pits
are required to specity the otfset of a word from the
veginning of a record. Up to 15 bits may be required to
specify record within tile. Fruil file aadresses are thus
normally storea in double words, in which strictly speaking
only tne low order 22 pits are significant.

File addressing within the oirectory is somewhat ajifterent.
S5ingle word addresses are used. P.(Y:7) 1is still a wora
offset into a particular record, but P.(1:8) 1s nows the
record number,

Unusea hign=-order bits ir both double and single word file
addresses should be set to zero, this will provide
compatibility with tne MPE segmenter.

The nigh order bit ot a tile address often has special
signiticance. It may be used to inaicate that the aadress
is & threaa link instead of a normal link. It may oe used
to indicate the enad of a list. It has various uses, whicnh
should pe carefully considered when interpreting any file
addaress.

The address zero has special significance. It is the null
address, NO pointer ever points to record zero.

File addresses are often relative to some location in the
file. The starting adaress of the information block is
normally used as the base address. The value ot a relatijve
address (even if it is zero) 1is added to tnhe base adaress
to obtain an actual file address. The high-order vit of an
address should not be involved 1in this calculation, since
it nas special interpretations. It should be set to zero
in bpboth the base and the offset before adaing. It is
essential always to consider whether an address 1is apbsolute
or relative, This aepends on the context in which the
address occurs.

In symbolic form, ¢file addresses are represented by two
octal numbers. The first is tive digits in length, ana
specifies the record number. The secona is three giqgits in
length, and specifies the offset to the desired word in the
record. These two numbers are separated by a blank. 1If
the high=order bit of an address is on, then °‘(1)°’ is
prepended to the five=-digit record number. (If in the
given context tne high-order bit has no signiticance, tne
(1)’ may be omitted,)

C~-02.13

3.3. Record zero

Record zero occupies the first record of a USL tile. It
contains pointers and counters essential to interpreting
the remainder of the file, Table 3.3 lists tne contents of
record zero in orader. A name 1is given to each field which
is used as a convenience in referring to the field.

Table 3.3 == USL File Record Zero Contents

word(s) Name contents

U the constant ‘1° == apparently
identifties the file as a valid USL
file

1 NDE number of entries in the directory

2 DL the directory 1length, 1in words

(number of words which have
already been allocated; includes

garbage)

3 DG number of words of DL which are
*garbage’

4 NDGE number of directory garbage
entries

5 BDL list head for the block data 1list

6 IPL list head for the interrupt
procedure list

7 SL list head for the segments list

8,9 FL length of the entire USL file, in
words

10 SAAD start address of available

directory space (should be equal
to 00001 000 + DL)

11 ADL available directory 1length, in
words

C-02.14

iable 3.3 =< USL File Fecord Zero Contents (cont,)

woral(s) Ndame contents

12,13 SAIB start adaress ot the 1ntormation
block (should be equal to SAAD +
AbLL)

14,15 1BL length of the information block,
in woras (number of words which
have alreaay peen dallocated:;
incluges garbage)

16,17 SAALB starting address ot the availaple
information block space

18,19 AIBL length in words of the available
intormation block

20,21 I1BG number ot words of IBL which are
‘garbage”’

22 NI1BGE number of garbage information

plock entries

23=32 apparently reserved; should always
be set to zero

33-127 hash list nheads

The wuse of many of these fields will be explained in
subsequent sections of this paper. The use of others is
indicatea in {illustration 3.3, This illustration labels
various 1locations and areas in a USL file with the names
assigned to the fields ot record zero which refer to those
portions of the USL file.

C-p2.15

Record Zero 128 words
00001 000 ==> T

In-use and
Garoage DL words

Directory

SAAD ==> T
Avajilapole

Directory ADL words
Space

SAIB ==> -1

In-use ana
Garoage
Information IBL words

Block

SAAIB ==>

Available
Information AIBL words
Block Space

P e GEe G e - D AR WP G P COs R G GID CEr G WD SR SIS GND M S GE GED Gpe W wew o SEm S

FL ==>

[llustration 3.3 == Use of Record Zero Fields

3.4. The directory

The USL file directory contains all information needed to
process and manipulate information contained 1in the
information block. A great variety of items are found in
the directory, but they are easily classifiea into distinct
groups. Tne elementary airectory data item is the ‘entry.’
The data structures formed from entries are familiar sorts
of trees and linked 1lists. Several implementation aspects
of the directory, which do not conveniently fall into any
other section, are listed pelow:

1. The directory begins at file location 00001 000.

C-02.16

2. Ekach adirectory entry consists ot some nuiber of
contliguous words. Entries are not, however,
necessarily contiguous within the directory. That
is, there may be some unused space between entriles.

3. File recoro opounaaries are not recognized witnin
the directory. Entries may span record ooundaries
freely.

4, All pointers to entries in the directory are
absolute pointers. If the pointer 1is contained
within record zero, or witnin the airectory itself,
it is a single word, anaga not a double w~ord,
pointer. (See section 3.2.)

5. All pointers to tne information bplock which are
contained in tne directory are douple wora
pointers. All sucn pointers are relative to Salb.
(See sections 3.2 and 3.3.)

The entries contained in the <directory are related on
lists. 1There are only eight types of entries, and only tour
types of lists, all ot wnhich are descripbed in aetail in the
following subsections.

3.4.1. Directory lists

The four types ot lists in the airectory are as ftollows:
the interrupt proceagure list, the segment list, the pblock
data 1list, and the hash 1lists, Fach of these four is
discussed 1in a separate subsection below. with eacn
subsection is provided an illustration of the list
discussed,

For every list in the directory, tnere is a certain type ot
entry, or there are certain types of entries, which are
included on that 1list. with the exception of the hash
iists, only entry types appropriate to the list may be
placed on the list. All entry types are appropriate to tne
nash lists, Entries may be included only on lists for
wshich they are appropriate,

Every entry 1is on exactly two directory lists. It is on
one, ana only one, of the block data list, the interrupt
procedure 1list, and the segment list, It is also on one,
and only one, of the hash lists.

C-082.17

3.%.1.1. The interrupt procedures 1list

The 1nterrupt procedure list (°IPL°) is a linear linked
list. Its list heac 1s IPL in record zero tsee 3.3). All
interrupt procedure directory entries are on tnis list.
tntries are linkea together by their orother pointers, with
a 1link of zero terminating the list. As of tnis writing,
no further information is available about tne [PL directory
list.

Record
Zero

IPL

Int. Proc.
Entry

bl

Int. Proc.
Entry

ol

Int. Proc.
Entry

- G W T CEN e e W TS AP P G AR Al RS GUR THD GIV I GED WS YIS @R WD G @b @D WS WU G WP WS WD TG W G e e

|
|
|
!
|
|
i
|
{
|
|
|
|
)
|
|
I
|
|
|
|
|
|
|
|
{
|
{
|
{
{
|
|
|
!
|
|
|

D D D D P WS D D TE P R AP G G D WP P D R P D TS U P W TS G WD G WD R WP P G EU T Gp W (P D) D UD TR WD WP WD OB WP TG GF W WD @D WD @ G OB " e

Illustration 3.4.1.1 == Interrupt Procedures List

C~-02.18

J.3.1.2. [he block data list

Ihe pbplock data list (’HDPL°) is a linear linked list. Its
list nead 1is BDL 1in record zero (see 3.2). B8lock data
suoprograms generate block data RBM°s. All block data
directory entries are on the B0L directory list. They are
linked together by their brother pointers, with a link of
zero terminating the list.

Record
Zero

BOL

Blk. Data
Entry

bl

Blk, Data
gntry

bl

Blk. Data
Entry

Illustration 3.4.1.2 == Block Data List

C-02.19

3.4.,1.3. The segment 1list

The segment list is really a tree. The pointer to the root
of the tree is SL in record zero (see 3.2). The following
three types of entries are found in the tree: segment
entries, &«BM entries (which may be either primary outer
block or primary procedure type entries), and secondary
entry point entries (which may be secondary outer block,
secondary procedure with parameters, or secondary procedure
without parameters type entries).

The segment entries do actually form a linear linked list,
with SL in record zero as the list head. They are linked
by their brother pointers, with a 1link equal to zero
terminating tne list.

A segment entry may have zero or more sons. The immeaiate
sons of a seament entry must pe RBM entries., The son
pointer of a segment entry points to the segment entry’s
tirst son. All the sons of a4 given segment are linked in a
linear list by their brother pointers. Ihis family list 1is
terminated by a link with its nigh=-order bit turned on, and
which points back to the parent segment entrye. For
example, if a segment entry is Jlocated at 00033 027, then
the link terminating the family list would be (1)00033 027,
If this segment entry had no sons, then the segment entry’s
son pointer would be (1)00033 027.

Each RBM entry may also have zero or more sons. The sons
of an RBM entry are secondary entry point entries. The son
pointer of an RBM entry is analogous to tne son pointer ot
a Ssegment entry. It points to the first son, and other
sons are linked into the family by their orother pointers.
Again, the tamily 1list is terminated by a link with its
high=-order bit turned on, and w»shich points bpack to the
parent ®BM entry. If an RBM entry has no sons, then its
son pointer points to itselt, Jjust as in the case of
seqgment entries with no sons.,

T'he 1links terminating family lists in the segment list are
referrea to as ‘thread’ links, since they refer pack to the
root of the subtree in which a node is located. The son
relaticnship 1is defined only from segment to RBEM entries,
and trom RBM to secondary entry point entries. The brother
relationship 1is detined from segment to segment, from KBM
to RBM, and from seconaary entry point to secondary entry
point entries. The father relationship is defined from RBM
to segment, and from secondary entry point to R8M entries.
The tree 1is thus a lefteson/right-sibling, threaded tree
data structure,

C-02.20

thnread link

|

|

Kecord '
Zero '
|

SL |

i

|

)

[

Segment }

Entry t

o1 | [s1° :

l

)

|

> Segment {
Entry !

|

0 sl |

|

|

\ |

, !

KBM |

entry |

bl si¥ :

I

|

|

RBM [

Entry |

|

pDl* sl {

|

|

i

Secondary :

Entry Pt. i

’sl. = son link bl¥ !
cl’ = orother 1link |
‘#*’ = link is a |
i

|

i

}

|

Illustration 3.4.1.3 ~-- Segment List

Cc-02.21

3.4.1.4., The hash lists

GO RN E DWW TS TE®® ST

To facilitate quick access to directory entries by name,
every directory entry is also placed on a hash list, USL
files use Y5 hash lists, the list heads of which are in
record zero (see 3.2). Each list head 1is a single word
absolute pointer 1into the directory. Directory entries
which hasn to the same list are 1linked to each other by
their hash links (see 3.4.2). Each of the 95 hash lists is
thus a linear linked list. A 2zero link terminates a nash
list. Hashing a name produces an inteyger between 0 and 94,
inclusive, which is used as an index into the 95 nash list
heads to access the hash list on which the entry referred
to by the name is located.

An entry should always be added to a hash list nearest to
the hash list head. That is, the hash list head should be
made to point to the entry, and the entry‘’s hasn link to
point to tnhe entry formerly pointed to by the nash list
head,

The MPE segmenter refers to the ‘index’ of an RBM, or
directory entry. This is a reference to how recently the
entry was added to its hash list. The most-recently added
is indexed one, the next-most-recently is indexed two, and
so on. "Least-recent" on any given list refers to the entry
on the list with a hash link equal to zero, When the MPE
segmenter refers to the index of an entry, only the entries
of a given name are considered. The entire list is not
relevant. The index zZero has a special meaning. 1t refers
to the most=recent active entry having the given name on
the hash 1list (active/inactive entries are discussed in
the MPE segmenter reference manual),

C-02.22

]
[}
]
]
]
[}
{
[]
[}
[}
!
1
(]
]
(]
]
]
]
'
i
]
[}
[]
'
1
[}
(]
[}
]
{
]
1
]
]
]
]
]
[}
[
]
]
(]
[}
]
]
(]
]
|
]
]
]
[]
!
[}
]
[}
1
[]
[}
]
]

Hash List HeaAs in Recora Zero

HLH HLH . . ° HLH

Entry

Entry

kntry

hl

\;

Entry

hl Entry
4/////’/' hl

Entry

Entry

‘nl’ = hash link
‘HLH® = nash list heaa

<

|
|
l
|
|
i
|
|
]
i
I
|
1
|
(
t
l
|
|
|
)
|
|
|
|
|
|
|
|
|
{
}
|
|
t
|
|
|
l
l

TETUCCCOM MRS I T D T T W T W D P A G P P T G P D W WD e W

Illustration 3.4.1.4 == Hash Lists

C-02.23

3.4.2. Directory entries

In this section, all eight entry types found 1in the
airectory are presented. All entries have some tields in
common, Wwhich together form a standard directory entry
prefix. Included 1in this prefix is a name field, giving
the name associated with the entry. ‘P1° is used to denote
an integer pointer whicn points to the word immediately
tollowinyg the last word used by the name field.
Illustration 3.4.2 shows the layout of the pretfix. The
contents of the prefix are described in table 3.4,2A.

Table 3.4.2A =-- Directory kntry Prefix Contents

Field Contents

P(0).(1:10) number of words in this entry

P(0).(11:5) type of this entry; types have
following designations:

segment entry

primary outer block entry

secondary outer block entry

primary procedure entry

secondary procedure entry, without

parameters

interrupt procedure entries

block aata entry

secondary procedure entry, with

parameters

Other entry types are undefined

DD W N =

@x ~N

P(1) the entry’s hash link (see 3.4.1.4)
P(2) the entry’s name field
P1(0) the entry’s brother link

C-02.24

R N A D D D e

0 Number of words in kntry Entry Type
Hash Link
* Name Length

Name of Entry

Brother Link

* See Table 3.4.2B

Illustration 3.4.2 =-- Standard Prefix

The P(2).(0:4) tield (that is, tne first nibole of the nane
field) has 1important uses. The interpretation of this
tielad aepends on entry type. I'hese interpretations are
given in taple 3.4.28.

Table 3.4.2B -~ Interpretation of P(2).(0:4)

Entry Field Interpretation

1 O:1 shows whether entry is active or not
(‘t’=inactive)

1:3 reserved; should be set to zero
2 O:1 shows whether entry is active or not
(‘t’=inactive)

1:1 shows whether entry 1is callable
(°1°=uncallable)

2:1 shows whether program unit must
execute in privileged moae

3:1 reserved; shoula be set to zero

C-02.25

Table 3.4.28 - Interpretation of P(2).(0:4) (cont,.)

Entry Field Interpretation

3 0:1 shows whether entry 1s active or not
(‘1°=inactive)

1:1 shows whether entry 1is <callable
(’1°=uncallable)

2:2 reserved; should be set to Zero
4 0:1 shows whether entry is active or not
('t’=inactive)

1:1 shows whether entry 1is callabple
(°1’=uncallable)

2:1 shows whetner program unit must
~execute in privilegeo mode

3:1 shows whether entry is hidden
5 U3l shows whether entry is active or not
(‘1 °=inactive)

1:1 shows whetner entry 1is <callable
(°1°=uncallable)

2:1 reserved; should be set to zero
3:1 shows whether entry is hidden
6 0:1 shows whether entry is active or not
(‘1°=inactive)

1:2 apparently an 1interrupt procedure
type number

3:1 reserved; should be set to Zzero

C-02.26

Taole 3.4.2B - Interpretation of P(2).(0:4) (cont.)

Entry Field Interpretation

/ vl shows wnether entry is active or not
(‘1’=inactive)

1:1 set if fatal error in block data RiBM

2:1 set if non-fatal error in block data
RiBM

3:1 reserved; should be set to zero

8 0:1 shows whether entry is active or not
(“1°=inactive)

131 shows whether entry 1is <callable
(*1°=uncallapole)

2:1 reserved; should be set to zero

3:1 shows whether entry is hidden

In the subsections of this section all entry types are
explained. A diagram of most types is presented to
illustrate the format of the entry. Mention will often be
made of "parameter information blocks," "header
information blocks," and "header information sets" (°Plb°,
‘HIB®, ana ‘HIS’, respectively). HIB and HIS are described
in 3.4.3, and so are not furtner discussed here. A P1B
provides the calling sequence of a program unit. It will
always in illustrations be drawn as a4 single large area,
but the reader should Keep in mind that 1t is really
comprised of one or more words, anda is thus a variable
length tield. ‘P2’ is used to denote an integer pointer
pointing to the word immediately following the PIB.

3.4.2.1. Segment entries

For segment type airectory entries, only a single word is
appended to the standard prefix. That word contains the
son 1link ot the entry. (The significance of a son link is
discussed in 3.4.1.)

C~-02.27

L R R R R X X X 2 X X N E X X X X X X X J - N W N T W T W TS W NS W W TS WA D DD W D WS

Standara Directory Entry Prefix

Son Link

{llustration 3.4.2.1 == Segment Entry

3.4.2.2. Primary outer block entries

A number ot fields follow the standard prefix in primary
outer block type directory entries. They are described in
table 3.4.2.2. In this table, ‘P’ is assumed to be an
integer pointer to the word ot the entry immediately
following the standard prefix. Each field is given a name
to simplify reference to the field in this paper.

Taple 3.4.2.2 == Primary Outer 8lock Fields

Fielda Name Contents
P(O) SONL son link of the entry
P(1) PUSA program unit starting address

(address within the code
module ot the entry point)

P(2),P(3) SAC starting information block
file address of the code
module (this address is
relative to SAIB; see section
3.3)

P(34).(021) ERROR set if program unit contains a

fatal error

P(4).(121) WARN set if program unit contains a
non-fatal error

C~02.28

raple 3.4.2.72 =-- Primary Uuter Block Fields tcont.)

rield name contents

PL4).(2:14) CUUFLEN numper ot aoras 1n tne object
code moaule

P(S) STACKEST an estimate of trne number of
words of stack needea by the
proaram unit

P(o) PDH tne numcer of words ot primary
LB allocated by this proaram
unit

(7)) Shb the number of woras ot

secondary vHd allocateu by this
program unit

P(3) TFECLEN rumber of words in a tavle
used by TRACE/300G0

P(Yy) DATALEN number ot words 1in secondary
Dty reserved oy DATA (FURIRAN)
or uwn (SPL) declaratijions

pt10) to heaaer 1information block tor
end of entry the proaram unit

@ w DT GE e e o e g e e e e e e .

sDB ana DATALEN are not tne same thing. OOATALEN retfers to
the number of woras in & ‘secondary Db array. Associatey
with each program unit is an area of secondary uUb space,
This area includes such things as tne FORTKAN loyical units
table, format strings (tnocse referenced in a reaa statement
and containing ‘H’ specitications must be globally located,
to retain tneir values), own/data variavles, and the like.
Incluaea in DATALEN is only that amount of storaae to pe
allocated for own/data variables=--this portion of the
secondary LB storage allocated by a program unit is
referred to as the seconoary DB array. Ihe followling are
not included in DATALEN or $DB8: the FORTRAN logical units
table, TRACE/3000 tables, and common arrays. SUB does
include the number of worus used by globally located tormat
strings.

C-02.29

Son Link

Program Unit Starting Address

Start Address of Code Module
(Relative to SAIbB)

* |x3 Number words in Code Module

Stack Estimate

iWnumber words Primary Db

NMumpber words Secondary DR

TKACE/300vu Table Length

Numper words of 0Own/Data

Errorl' 3% jarning

Illustration 3.4.,2.2A - 0.B. and Proc. entries gBody

Ihe first ten words ot this entry are shown in illustration
3.4.2.2A, The format ot primary block entries as a «~hole
is snown in illustration 3.4.2.2b.

- R WD O O D GG S D DD W W IR T W U TS W D D D TR SR W WD D WD @ A% ap e

Standard Directory Entry Prefix

Outer Block Entry Rody
(see lllustration 3.4.2.24)

Header Information Block

- e ey G G e G Wy W T AR W P R

Illustration 3.4.2.28 == Primary Outer Block Entry

C-02.30

3.4.2.3. Secondary outer block entries

Lnly a single word is appended to the standard pretix for
secondary outer wplock type directory entries. This word
ingicates the location of the entry point in the code
module dassociated witn the parent directory entry. Ihe
word 1s given as a word-ottset from the beginning of the
code module, ana so is analogous to PUSA, described 1in
3.%4.2.2.

----------------------n---------------—----------------—---—

Standara virectory tntry rPretix

Projram Jnit Starting address

Illustration 3.,4.2.3 =-- Secondary futer Block kEntry

C-02.31

|
|
|
|
{
|
|
|
|
i
|
|
i
|
|
|
|
|
|
!
|
|

3.4,2.4. Primary procedure entries

Primary procedure type <directory entries appena to the
standard prefix exactly the same information as 1s appendeag
by primary outer block entries, with one exception.
Between DATALEN and the header intormation »bplock, a
parameter intormation block is inserted.

3.4.2.5. Secondary proceaure without parameters entries

The secondarv procedure without parameters directory entry
type appends to the standard prefix only a single w#ord.
This word <contains the aadress of tne entry point to the
code module associated with the parent entry. Ihe address
is a word-offset trom the beginning of tne code module, and
so is analogous to PUSA, described in 3.4.2.2.

Standara Jirectory bkEntry vrefilx

Priimary Procedure Entry body
(see lllustration 3.4.2,.2A)

Parameter Information Block

Header IntormAation Block

- e G G WE T @e g P SN e M GEr AU WA Yhr SN W Gy wEn e

Illustration 3.4.2.4 == Primary Procedure Entry

C-02.32

TE DWW WD U DWW W ® W

Stand4ard Directory kntry Pretjx

Program Unit Starting Address

Illustration 3.4.2.5 == Sec. Procedure, NO Parms., Entry

3.4.2.0. Interrupt procedure entries

After the standard prefix, interrupt procedure type
directory entries append tive wordas. These five words are
followed by a header information block. Ihe proper
interpretation of the ¢ftive woras has not vyet opeen
determined,

3.4.2./. HBlock data entries

A bplock data type directory entry appends after the
standard prefix a4 numper of subentries. Each subentry
contains information for one block of common. (As far as
the segmenter is concerned, every block of common is named.
The name "CuM’" is used to reter to blank common.) fhere is
no explicit indication of the number of subentries present.
This must bpe deducea from tne subentries themselves, and
from the number of words in the entry as a wnhole.

The first Jord of a subentry gives tne numoer of words in
the common block, Following this is a name field giving
the name of the common block. beginning in the word
immediately following the name field, there is a header
information block for the subentry. Thus, in a manner of
speaking, the common block name and length are prepended to
the relevant header intormation block.

C-02,33

number of woras in Common Block

0 Name Len

Name of Common block

Header Information Block

| |
| {
{ t
| |
| |
| l
| |
| |
| !
| |
| |
| |
[‘
| |
| '
| |
| |
) |
(|
| |

- VS G W W w® D E W D NI I T P U Gl D R YD) WS WP E D YD TP D WD T G U TS W W P e

lllustration 3.2.4.7A == Block Data Subentry Format

!]
|]
| |
i Standard Directory Entry Prefix)
' I
! |
! 8lock Data Suoentry !
| |
| i
| |
! Block Data Subentry |
! '
| |
']
| * |
| L |
) L] i
!]
| |
| |

Illustration 3,2.4.7B == bBlock Data Entry Format

C-02.34

Standard Directory Entry Prefix

Program Unit Starting Address

Parameter Information 8lock

lllustration 3.4.2.8 =-- Sec. Procedure, with Parms. Entry

3.4.2.8, Secondary procedure with parameters entries

One word, and then a parameter information block, are
appended to the standara pretix in secondary proceaure with
parameters type directory entries. The word placed between
the prefix and the PIB contains the address of the entry
point to the code module associated witn the parent entry.
Ihis address is given as a word-oftset from the beginning
of the code module.

3.4.3. Header information blocks

In a USL tile in MPe, a ‘header’ is an entry in the
intormation block of tne file which provides information
necessary for relocating a program unit, and for binding it
with other program units. The various types of headers
whicn are possible are discussed in section 3.5. In this
section, the nheader information blocks tound in directory
entries are aiscussed. HIB's are used to provide
intormation about the number, tyres, and lenaths of headers
associated with a directory entry.

A header information block 1is divided 1into header
intormation sets. Each HIB 1is a more or less distinct
entity. Any number ot header intormation sets (including
zero) may be includeada 1in any header information block.
There is no explicit inaication of the number of header

C-02.35

[
|
[
!
|
|
|
|
'
|
t
|
|
|
'

information sets are in a8 header information block. This
must be deduced from the HIB itselt, and from the number of
words in the airectory entry as a whole. A HIS begins with
a word which specities in its (1:15) fiela the number of
‘header descriptor words’ that are present in the HIS. The
(0:1) tield of this word is set to zero unless tnis HIS is
the 1last HIS of the HIBK, In this case, (0:1) is set to
one. This word is tollowed by a double word file address
which 1is relative to SAIB (see 3.3). This address points
to the tirst word of the ot the first of the actual headers
corresponding to the hIS. (All headers corresponding to a
given HIS must be contiguous in the intormation block. See
section 3.5.)

In the tnird and tollowing words of a HIS are header
descriptor words. There is one descriptor word for each
neaader associated with the HIS, and the descriptors are in
the same order as the neaders themselves in the intormation
block. A header descriptor has only tnree fields. The
first, (0:1), 1is unused, and should be set to zero. The
second, (1:10), gives the lengtn of the associated header
in words. (The lengtn of headers is thus limited to a4
maximum of 1023 words.) The third, (11:5), gives the
number of the type of the header. Header type numbers are
presented in section 3.5.

3.5, 'The information area

The information block in a USL file contains all header
entries. All addresses in the directory which refer to the
information block are relative to SAIB (see 3.3). Because
of thls, the entire information block may be moved up and
down in <the file, <changing only a few tields of recora
zero., Record boundaries are not recognized 1in the
intormation block, but it should nonetheless begin on a
record boundary.

3.5.1. Code modules

A code module is a special sort of header., 1t has no
associated header descriptor word, it may be longer than
the normal maximum of 1023 words, and it is never
explicitly included 1in any HIS (see 3.4.3). It may,
however, bpe placed anywhere within the headers associated
with a HIS. The starting address ot the code module, SAC

C-02.36

(see 3.4.2) must be used to detect the presence oOf the code

while sequentially processing the headers. If the code
moaule is not needed when detected, it may simply be
sKipped. It 1is, as are all neaders of a single HIS,

contiguous with both the preceding (if any) ana toilow#1ng
(it any) headers.

The code module contains for the most part finished code,
ready to be placed into a progream. There can be many
exceptions to this, however, depenaing on other headers
associated with directory entries associatea with tne code
module, There are various linear 1lists and relocatdple
addresses in the code module itself which are used by these
other headers. The relevant lists and addresses will be
discussed pbelow together with the appropriate neaders.

3.5.2. Information headers

There are twelve types of information headers. They are
numbered as tollows:
null (a garbage header)
PCAL, LLBL, or program unit PB address
PB address
own/data variable (for address correction)
secondary DB initializations
a taole for TRACE/3000
variables declared GLUBAL
variables declarea eXTERNAL
primary DB declarations and initializations
common (accomplishes only address correction)

10 FORTRAN logical vunits

11 globally located formats
These numbers are used in header descriptor words. (Header
descriptor words were introauced in section 3.4.3.) pvery
header begins with a header descriptor word which describes
it. The tormat of these descriptors is as follows:

(0:1) reserved, should be set to zero

(1:10) the length ot the nheader in words

(11:5) the number ot the neader type
Although all headers begin with a descriptor word, each is
thereafter nhighly individual. Each type is describea in a
separate subsection below,

WEENOCOONMEWN = O

All of the headers associated with a given HIS must be
contiguyous within the intormation block. The directory
gives only the tile address of the first word ot the tirst
header of any HIS. 1t the neaders are not contiguous, it
will not be possible to locate them in the file.

C~-02.37

3.5.2.0. Null headers

A null neader is a garbage entry. It simply takes up as much
space as indicated in the header descriptor word. 1t has no
signiticance to the program unit with which it is associated.

3.5.2.1, PCAL headers

PCAL headers provide all information needed to 1link the
program unit to external oprogram units. It actually has
three functions, as follows: to make PCAL patches, to make
LLBL patches, and to make procedure PB relative address
patches. It is structured as indicated in table 3.5.2.1.

Table 3.5.2.1 == PCAL Headers

Field Contents
P(0) header descriptor word
P(1) word offset into code module to the

first word of a 1linked 1list of

references to the program unit

described in the headeyr; each word in

the 1list in the code module has the

following format:

.(0:1) O=patch in a PCAL instruction,
1=patch in an LLBL instruction

.(1:1) O=patch as indicated by .(0:1)
1=patch in PB relative address
ot the program unit

.(2:14) 1link to next list item (this
is a self-relative backwards
pointer; the 1list terminates
with a zero pointer)

P(2) a name field, giving the name of the
external program unit (P(2).(0:4) is
unused, and should be set to zero)

Pl tollowxpg the name field is a
parameter information block

C-02.38

3.5.2.2. PB address headers

This header provides a means of patching words in the
program unit which contain PB relative addresses. After
the header descriptor word, the neader is simply a series
of pointers, each of which is a word-offset into the code
module. (The number ot tnese pointers must be deauced from
the length of tnhe header as a wnhole.) In each word in the
code module thus pointed to, the compiler must place a Py
relative address, This address will be corrected by the
MPE segmenter at prepare time by adding to it the PB
relative address of the tirst word of the program unit.

3.5.2.3. 0Uwn/data headers

At compile time, the run time address of an own or data
variable is not known. It is assigned at prepare time.
ihe MPE segmenter solves this problem by reguiring the
compiler to place in the code module a pointer to the
variaole, This pointer will of course then be part of tne
code at run time. The compiler initializes tnis pointer to
the ottset 1nto tne program unit‘s secondary D8 array
assigned oy the compiler to tne variable. At prepare time,
the segmenter will add to this value the DB offset of the
program unit’s secondary DB array, thereby providing the
code at run time witn the correct pointer value.

After the header descriptor word, the entire header
consists of pointers each of which is a word=-offset into
the code module. (The number of pointers must be deduced
trom the length of the header.) Lach points to a location
whicn is to pe patched at prepare time. The high oraer bit
of the pointer determines whether a byte or a word pointer
is being initialized. 1f .(0:1)=1, then the contents of
the code module word specified by the word offset in
.(1:215), and the correction added at prepare time, are byte
offsets. If .(0:1)=0, they are word offsets. (It is
believed that the high order bit of the code module word
pointed to {is also interpreted in this way. That is, it
either high order bit is on, either in the header pointer
or in the code module word, then the address is to be a
byte address.)

C-02.39

3.5.2.4. Secondary DB initial values headers

This neader may be used to place initial values into the
program unit’s secondary DB array. The word which follows
the neader descriptor word gives the otfset into the
seconaary DB array at which the tirst of the given initial
values is to be placed.

The third word of the header has two fields. The .(0:1)
tield determines whether a byte 1initialization or a word
initialization 1is to be performed, It .(0:1)=1, then the
second word of the header is a byte offset, and tne fourth
wora of the header is a byte count giving the length of the
initial values 1in the header. In this case, the initial
values begin in tne fifth word of the header and continue
for as many bytes as the fourth wora 1indicates. 1f
.(0:1)=0, then the second word of the header is a word
ottset, In this case, the initial values begin in the
fourth word, ana continue to the end of the header.

The .(1:1%) ¢tield of the third word gives a replication
factor, The initial values specified in the header will be
placed in successive locations in the secondary DB array as
many times as indicated by this fiela. Thus, 1if the
initial values are "xxyxx" and the replication factor is 2,
tnen "xxyxxxxyxx" will be placed into the secondary DB
array, beginning at the location specified in tne second
word of the header.

3.5.2.5. TRACE/3000 header

This header provides information for use at run time by
TRACE/3000, After the nheader descriptor word, tnere is a
word pointing to a linked list in the code module. After
tnis, peqginning in the third word of the nheader, and
continuing to the end of the header, is data which is
believed to be 1initial values ot some sort. No further
information is availabie as of this writing aoout this
header type.

C~02.40

3.%.2.6. Global variapble headers

1t is possible to declare a variable GLOBAL in one program
unit, EXTERNAL in another, separately compiled program
unit, and have the MPE segmenter resolve all references to
the variable., (SPL/3000 1is the only Hewlett rackara
language allowing explicit daeclaration ot GLUOBAL or
EXTERNAL attributes.) Following the header descriptor word
is a4 data descriptor word, which gives the type ana
structure of tne variable, The fields of this data
descriptor are as follows:
.(0:4) the mode ot the variable (vU=null, 1=
value, Z=reference)
«(42b6) the variaole’s structure (O=simple
variable, i=pointer, Z=array)
.(10:6) the type ot the variable (0O=null, 1=
logical, ¢=integer, 3=byte, 4=reai,
S=aouble, b=1long, 7=complex, 8H=label
(passed SPL, rashion), Y=character (as
in FURTRAN/3D00), 10=label (passed in
in FORTRAN/3000 fashion), ll1=any)
In tne left byte ot the third word ot the neader is tne run
time DB relative address of tne variable. (Global storage
address assignments for primary DB are normally made by a
compiler wnile compiling an outer pblock, and are not in any
way relocated by the segmenter.) The .(8:4) tield of the
third word is reserved and should be set to zero. «(12:4)
contains the length ot the name 0t the variable, in pvytes.
I'he name itselt begins in the left byte of the fourtn word,
ana continues for as many bytes as necessary. Tne name is
always an integral number of words in lendath, ana so a byte
is sometimes wasted.

3.5.2.7. External variaple headers

A varlaole declared EXTERNAL is to be matched at prepare
time with a variable declared GLOBAL in some other program
unit. The first word of the header 1s of course a header
descriptor word., The secona word 1s a data descriptor
word, wnich has the format aescribed in section 3.5.2.6.
Following the second word is a name tield. The .(0:1) bit
of the first word of the name tield is a ‘trace’ bit., 1If
it 1is on, it indicates that the variable may be traced by
TRACE/3000 at run time. .(1:3) 1is reserved, and should be
set to zero.

1t the trace bit 1s on, then in the word immediately
following the name field is an offset into the TRACE/3000
symbol table. 1f the trace bit is otft, this otfset is not
present,

C-02.41

Following the name field, and the TRACE/3000 symbol table
oftset, if present, is a series of pointers, each of which
is an offset into the code module, Each points to the
first ot a 1list of instructions to be patcned witn the
address of the appropriate GLOBAL variable. f{&ach ot the
instructions to e patched must be a memory reterence
instruction, since GLUBAL variables will always reside in
the primary OB area. The address ¢fields ot the
instructions to be patched (the right byte in memory
reterence instructions) serves as the 1link tield for the
1ist. 7Tne links are self-relative backward pointers. Each
1ist is terminated by a zero pointer.

Therte is no explicit indication of the numoer of pointers
in the header. This must be deduced trom the length of the
neader.

3.5.4.8. Primary LB headers

For the purposes ot the MPE segmenter, primary Db words are
classitied into word pointers, byte pointers, and aata.
After the descriptor word in this header there is a series
of words, each of which 1is divided 1into eight two=-bit
fields. All these tields, 1in order ot occurance,
correspond to primary DB locations. The first it tor DB+0,
tne second for DB+1, and so on. The values of the fields
are interpreted as follows:
0 the initial value is not an address
1 ¢tne initial value is not an address
2 the initial value is a word address which
points to the secondary Dp area
3 tnhe initial value is a byte address which
points to the secondary DB area
lnitial values in the neader that are addresses are
relative to the beginning of the program unit’s secondary
LB Aarea. The entry, after the array of two-pbit-field
words, contains initial values. There must be PDB (see
section 3.4.2.2) two-bit fields, and pDB initial values.

There may be a slack word between the two-bit-fiela array
and the initial values., Because of this, the initial
values should always pe accessed from the ena o0f the
header. That is, it P is an integer pointer to the last
word of tne header, then P(=(PDB-1)) accesses .the first
initial value,

normally, only an outer block program unit would make use
of this header type. Non=outer block program units should
not be allocating primary DB storage, and the value of PDB
for tnem should be zero.

C~-02.42

3.5.2.9., Common variable headers

The MPE segmenter allocates secondary DB storage for all
common DbloCKs. In order tor a program unit to access a
variable in common, it must use this header. for each
common varlable referenced in one of these heaaers, the MPk
segmenter «ill allocate a pointer 1in the primary DH area,
and properly initialize it to point to the common variable.
b>pecified instructions will be patched with tne address ot
tnis pointer,

Following the nheader descriptor word is an integer which
gives the length in words of the common block to which the
neader applies. MHBeainning in tne third word is a name
tield, giving the name of the common block to whicnh the
header applies (blank common is named “COM’"). The .(0:4)
tield of the name tiela is reserved and should oe set to
zero,

Beginning in the word immediately following the name field
is a series ot variable descriptors. There is no explicit
indication of the number of variaole descriptors in the
neader, This must be deduced from the header’s lengtn and
contents. Table 3.,5.2.9 gives the format of variaple
descriptors.

It must be noted that if the trace bit (P(0).(1:1)) is not
on, then the displacement into the TRACE/3000 array (r(2))
is not included, It is simply omitted, and the list heaas
move up to fill in its place.

C-02.43

Table 3.5.2.9 == Variable Descriptor Formats

Fiela Contents

P(0).(0:1) 0=DB pointer is to be ot type word,
1=DB pointer is to be 0of type byte

P(O0).(1:1) ‘trace bit‘; O=variable will not be
traced vy TRKACE/3000 at run time,
1=variable may oe traced

P(0).(2:14) the number of lists of instructions
which are to be corrected (there are
this many 1list heads later in the
varihble aescriptor)

P(1) the displacement witnin the common
block of the variable

P(2) displacement within a TRACE/3000
array ot information about the
variable (NOTE this tield 1is

present only if the trace poit
(P(0).(1:1)) 1is set; otherwise it 1s
completely omitted)

P(3) the 1list heads of the lists of
to instructions to be patched; each
P(2+P.(2:14)) 1list head is an offset into the code
“or= module to the tirst word of a list
P(2) (the 1lists are formed the same as
to the code moaule 1lists used by

P(1+4P.(2:14)) EXTERNAL variable headers, descripbed
in section 3.5.2.7)

3.%5.2.10. FORTRAN logical units table headers

This header indicates wnhich FORTRAN 1logical units are
referenced by the program unit. The MPE segmenter will
construct the FURTRAN 1logical units table from the
information contained in FLUT headers. After the header
descriptor word there are exactly seven words. These words
contain a bit map, in which the first bit corresponds to
l1ogical unit numper zero, the second to logical unit 1, the
third to LU 2, and soO on. If a bit 1is on, the
corresponding 1logical unit will be included in tne FLUT
table at run time. The bits are numbered from left to

C-02.44

riant. The ‘lett-most’ word is the one which occurs
nearest to the header descriptor word., Leygal LU’s range
from 1 to 99, inclusjive.

3.5.2.11. Format headers

Formats which include an ‘H* specification, and are
reterenced in a KEAD statement, must pe ¢lobally located o
retain petween calls to tne program unit values read into
the ‘H’ specification. Tnis header allows tnat. 1t
contains a format string wnhich is to pe placed in tne
secondary 1B area,

Atter the header descriptor word is a word whicn agives 4
wora otfset 1into the code module. The code mooule wora
thus indicated is the first ot a list of words to pe
initialized at prepare frime with the Dis relative aadress ot
the format string., within the list in the code moaule, the
.(2:148) tield of edach menber of tne list 15 a
selt-relative, bpackward pointer to tne next list element.,
A link of zero terminates tne list. If the .(u:l) tield Of
such a code module word is set on, then the UB relative
pointer placed into that word is to be a bpyte aaaress; 1t
.(021)=0, then the DK relative pointer placed into the code
mouyule wora is to be a word aadress. Tne pointer placed
into the word will point at run time to the peaglnning of
the format string.

Tne thira word ot the neacer gives the lenyth, in oytes, ot

the format string. The tourth and following words, as mnany
4s nhecessary, contain the tormat string itself.

C-02.45

	Papers / Presentations
	Machine Utilization
	MPE Object Code Formats An Introduction to USL and Program Files

