
A lJ ATAD I CT I (J ta:. RY/ LJ 1PI:; CTL F Y lJ B. I VENe LIN I CAL DATA ~: ANAG El'~ E~ l' SYST t: M

ERIC S. HERBEL
HCh~Ch ST- FUL .s SEL PH Ak "1 ACr..lJ TIC .l\ L S , INC.

h3STPACT

A clinic~l researcn catc ~ona~e~ent system ~as developed which is
jri~:en by a nier~rchical cata base form of a data dictionary usin~

v~rianle lengtn record KS~M files. Tne actual structure of the data
dictionary (the nierarchical data v3se approach, and variable 1en~tn

1 i s t s i ~.~, 1e !"I e n ted i n 1\ SA,.~ va ria b1e len ~ t n r ecor d f i 1e s) i s
e ·1;)!;~si:::e1. lne system incluaes data entry, editing, on-line
correctjons, a variety of I~M/370 resident intertaces, and 3

9 ~ L E' r 2. 1 i zed I i· PG~ cat a bas esc he :n a ..,,~ r i t e / loa de r • A11 0 t the s y s t e TI

~od~les ~re driven by the data ciictionary. Details of the IM4G~

i~terf~ce are also e~~nasized•

• Tne Data Dictionary/Lirectory concept in general
• and the HP imp1enentation in detail

• Overview ot tne clinical data manage~ent system
• Data Entry - key to disk emUlation
• DCita Preparation - editing, corrections, listing, etc.
• Ddta Dictionary - definition, mOdification, reporting
• Uata ~anag€ment - Image sche~a writer/loader, interfaces

to IBM/370 D8MSs.

IMAGE/30ao schema writer/loader in depth.

DE.SCF<lPTlot·J Uf DATA DICTI(:t~ARY/DIR~CTOf{Y

C0 Ifl i Ie r cia 11 y a v c:: i 1a ole 0a taD i c t ion a r y / Direc tor y s y 5 t e tTl 5

are typically c~aracterized by:
identification of each element or field (name, aliases,
description)
ty~e specifications for each element (numeric/character, etc.),
field size nnd otoer pnys1cal descriptions

B-10.01

•

rep 0 r tin q s p e C i f i c <?: t ion s for t;) e tie 1 d (:> u t P I.~ t t ') r ;, at,
And nefault la~el)

data editing criteria - a ran~e or tabl~ ot ~ccept~ole values
aa:ninistrative information s~cn as ~no C3n access various
e len: e n t s, and i n for n, a t ion 0 n Ii ~ i c h a ? p lie a t ion 5 use s p e c i f i c
e 1 efi·en t s
and r. a i fa ten an c ere s po nSib iIi t y for the e I e 'I. en t •

A data directory is ar. extension of the data dictionary concept
intenaed pri~arl1y for machine processing of tne n:eta data(d3ta
~hich defines data). Gn toe other hand, 3 data dictio~ary is
i~tended to Aid in numan und~rstanding of the data. AP9lications of
toe oirectory concept rave included auto~atic generation of data
de fin i t ion s (s c t; e ma) for i nput t 0 va rio us D~ l'~ S •

I~PLE~E~TATION OF A DATA CICTIONARY/DIHECTOHY ON TBE HP3000
------~------- ~~ - ~-~- --~-~-----~----~-~~- -- --~ ----~-
Most data dictionary slstems currently in use app~ar pri~arily

concerned with aiding t~e DA1A BASE AD~INIS!RATOR and other HU~AN

data dictionary users. ~e ~ere certainly concerned ~itn this aspect
of the use of the data dictionary, out placed more em~hasis on the
DIR~CTORY side of the concept. The net result of this e~phasls soift
is that the majority of application programs in the system are
DRIVEN oy the central Data Dictionary/ Directory.

tne Data nictionary/Oirectory implemented on the HP contains rr.ost of
tne traditional elements nientioned above, but it does not presently
c~ntoin security information or pointers to ap9lication rro~ra~s.

rlo~ever so~e significant additions were made.

First at the element or field level a numoer of modifications
\I. ere r, a de.

• i\ i:: Y fie 1ds are not e d ~ t his will c au sean I f·j AGF aut 0 lTi a tic
master to be created for it

• On-line as well as background edit specificatiOns were 3dded
facilitating editing during data entry or later in back~round

• A link to a decode table for the field was included,e.Q. the
decode file taole entry name(used as a prefix for its KSA~ <ey).

• Should the field be verified during data entry?
• Should the field ~e automatically duplicated from a previous

record in the data entry form(set of defined records)?

The secone and most in.portant set of additions center of the
masterfile's structure. This structuring information includes
pnysical RECORD definitions, logical UNIT definition, and ~hen thes~

UNITs occur, or the E~COUhTER definition.

RECORD content, i.e. ~hich elements nake up each 80 byte masterfile
record (this is tne data entry ~edlum); also where each field
starts on the record, and ~nether it's repeated as a conti~uous

block or array.

B-10.02

Logical UNIT structure, i.e. which 80 byte records make up a logical
UNIT of information (later used as the entity equivalent to an IMAGE
data set). These logical units are generally entered together
during data entry (called a FORM at data entry). Various ~ey

fields appearing on every record aid in the logical connection of
records in a UNIT.

These structuring entities are SUfficient in most cases to process
the data, i.e. define the data entry form, define specifications for
the batch editor, and define the schema for an IMAGE data base.
However, we've gone one step further in the structure progression ­
adding the element of time, i.e. when a group of logical UNITs are
to occur. This is called an ENCOUNTER definition, corresponding to
a clinical visit encounter between a subject and physician. During
each visit, various UNITs of logically related data are to be
collected, so an encounter consists of a list of logical UNITs. Tb
facilitate automatic assignment of UNITs to a given encounter, an
ENCOUNTER CLASSIFICATION EQUATION is included which defines
membership criteria, e.g. VISIT NUMBER=5 or Days into study is
between 4 and 7. This structure actually captures the final
dimension necessary to fully define a clinical study to application
programs which will categorize, inventory and even analyze the body
of data.

ACTUAL DATA DICTIONARY/DIRECTORY FILE STRUCTURE
-------------------- ---------

To facilitate most efficient use of the entire system - a true
network structure was chosen. As a reSUlt, individuals defining a
new data dictionary/directory can "point" to any entity already
defined, at either the UNIT, RECORD or FiELD level. This automatic
GLOBAL capability has greatly enhanced the use of the system. Tnis
has also encouraged use of STANDARD UNITs or RECORDs across stUdies.

The data dictionary/directory system is implemented in a set of
variable length record binary KSAM files(except the field level file
which is fixed length). Each KSAM file in the set corresponds to a
level in the structural hierarchy.

The linkage between the various files in the hierarchy is maintained
by a variable length array of pointers with associated information
pointing to the next lower level file. The pointers are in the form
of KSAM keys into the appropriate SUbordinate file. Selected
information belonging to a SUbordinate file is often stored along
with the pointer to the record(i.e., the Field start column is
stored at the RECORD fil~ level). This convention was adopted to
facilitate use of glObal information, i.e. information used by manv
studies or recordS, and information thought to change most
frequently was stored at a higher level in the hierarChy. As an
example, the length, edit specs, label, etc. would prObably not
Change for the field blood pressure between stUdies. The startinq
position on the 80 byte record prObably would change from study to
study, so the starting column was stored at the RECORD level In the

a-10.03

--

I STUDY Subtile

r-------~----------
*

r-----------~------I UNIT SUbflle I

** *
*

*

I FORM Subfile

*

*

*

*

*

*

*
*

*

**
*
*

*

*
*

* --------------------
* I ENCOUNTER Subfilel

* --------------------

*

* *
* *

**

I RECORD SUbfile

I
v

----------~~------_.-
I FIELD SUbfile

--------------------~

--
Figure 1. Illustration of the data dictionary hierarchy.

hierarchy, so many RECORDs can "point" to the same common blood
pressure definition.

The STUDY level file records contain descriptive fixed len~th

information about a clinical study(masterfile), as well as three
variable length pointer stacKS. These three stacKs contain
character type keys to the attached UNITs, the ENCOUNTERs and the
data entry FORMs. The three stacks share contiguous space in the
record - with the base of the FORM pointer stacK just after the UNIT
stack and so on. The Data Dictionary/Directory is generally
accessed from FORTRAN, so, the fIxed length elements of the record
can be accessed after a record is read(using FREADBYKEY) simply by
an EQUIVALENCE of the items to the LOGICAL type buffer. The stacKs
are accessed by actually moving a LOGICAL word at a time into a
LOGICAL typed TRANSFER buffer Which has been equivalenced to a
Character variable.

B-10.04

The ENCOUNTER file records contain a fixed length portion which
includes the primary key, the ENCOUNTER CLASSIFICATION EQUATION and
the top of stacK counter, followed by a variable portion containing
the member UNIT stack. Each entry in the member UNIT stack contains
a PL/I like structure (heterogeneous typed structure) containing the
UNIT Key (character type) and the number of that type UNIT required
in the ENCOUNTER(integer type). Each entry in the stacK Is accessed
by moving a word at a time from the appropriate address In the
record buffer to a logical type transfer buffer. The character
variable followed by an integer variable are equivalenced to the
transfer buffer. Note that the encounter classification equation 1s
later parsed then interpreted bY various application programs.

The UNIT file records are very similar to the previous level
records, i.e. a fixed length portion for UNIT description followed
by a variable portion for the attached RECORD stacK (also containing
the number of each RECORD type required in UNIT). A new value is
added to the fixed length portion of the record - the global counter
- to aid in controlling use of the global facility. This Is present
also at the RECORD and FIELD level. The counter is set to 1 if the
UNIT record is local, i.e. not pointed to by any other study, out
It·s incremented every time it·s pointed to. This allows detection
of its global status(to provide for a warning on the effects of
modifying it), as well as providing for local deletes. If an entity
is global, and it·s to be "deleted", the global counter Is
decremented, and the pointer to it is removed(the actual record is
not removed). If the counter is 1 and it's being deleted - tnen
actually FREMOVE it.

The data entry FORM file is almost identical.

The RECORD file record is basically the same, except that each entry
in its member FIELD stack contains a larger neterogeneous typed
structure. The structure includes the FIELO·s key(character), its
starting column (integer), the member of contiguous repeats of the
field on the record(integer) and whether it·s required (for editing
purposes).

The FIELD file record is
containing all the basic
descrlptionClabel), etc.

REASONS FOR USING KSAM/3000

the simplest - fixed
information such as

length binary ­
type, len-gth,

._-.,--- ----- .--------
The Data Dictionary/Directory could have been implemented using a
set of direct access files, with an index into the top most level
(study level) providing a table of contents. Pointers to
subordinate entities, e.g. pointers to all attached RECORDs in any
UNIT, could have been the actual record address in the SUbordinate
file. This approach would have been very efficient in tree
traversal time(data dictionary hierarchy traversal). Problems
associated with this approach are:

B-10.95

•

•

•

•

MPE presentlY doesn't support direct access variable length
records (variable length records being very important for
efficient implementation of the overall structure)
broken pointers, i.e. bad record addresses are very difficult
to fix - probably requiring a dual pointer structure (pointer
to son from father and vice versa)
a garbage collection mechanism was needed - would have been
necessary to explicitly set this up
the global use of UNITs, RECORDs or FIELDs would have become
extremely difficult to implement - one would need a separate
list of availabe entities with their record addresses.

1~AGE/3000 itself could have been used to implement the data
dictionary (something occassionally done in commercial systems). The
straight hierarchical structure of any single LOCAL data dictionary
would have been implemented satisfactorilY as illustrated in Figure
3.

The global entity concept would have been very difficult(impossible)
to implement using this structure, though. Also, information SUCh
as Field start column couldn't have easily or efficiently been
stored at the RECORD level (no variable length records in IMAGE, or
compound items as chain heads).

The Data Dictionary/Directory was implemented In KSAM/3000 because:

•

•

•

variable length keyed-access records are supported, so
variable length pointer lists with associated information
is possible.
using keys as pointers rather than actual record addresses
greatly simplifies implementation of global entities and
security/accuracy of pointers.
KSAM takes care of garbage collection automatically.

Traversing the tree structure using keys into SUbordinate files is
not as fast as direct access using a record address - but it's close
(KSAM takes care of that). More importantlY though, this small
disadvantage in speed is considerably offset by all other
capabilities gained (as stated above).

OVERVIEW OF THE SYSTEM DRIVEN BY THE DATA DICTIONARY/DIRECTORY--- ------ ------ ---- --------------------
The clinical data management system implemented on the HP3000
includes:

•
•

•

a key-to-disK emulating DATA ENTRY system
a set of DATA PREPARATION modules, including a batch editor,
on-line error corrections, a masterfile inventory procedure
and various listing/reporting utilities
the DATA DICTIONARY/DIRECTORY subsystem it~elf - containing
an interactive.:for~attedscreen definition/modification
procedure, along· With many reporting and auxiliary use

a-16.06

utilities
~nd the D i'~ '1' A lit Aj'J AGI:.. f\i ENT SUO 5 Y5 t em wrl i c h cOr) t a ins s e9 rr e n t s for
m~stertile trackinq(orimary residencellb~ vs HP), stat1sti:s,
etc •), Rt ns t e r f i 1 e n,o ve Ell e nt, and an J i·\ AGl=; s c hem a \\ r {t e r / I 0 d d e r •
(Interfaces to Ib~ resident DB~bS also exist).

All elements of the syste~1 are generalized and function tor 3nv
stu ct Y b~ sed 0 n in tor mat ion 9 a i ned p rIm a r i 1. Y t r 0 III t n eo u ~ t ~

DictionarVI l)irectorY(so~e modules are implemented using otner
similarly constructed central files, such as toe masterfile tracKinJ
tile).

DATA ~NT~1 SUHSYST~M------ -~-__..-
1nis is a key to disk emulating "keyouncn" ooeration which supoorts
an input/verify data entry cycle. Data is keyed on a
micro-processor controlleo data entry terminal(tne standara HP2645A)
uti 1i z i ngami c r 0 pro9 ran. dow n10 c:l aedt rom the t-I P3000 • Tn e d a t a i 5

keyed in 80 column card images using c~rd masks or ~U~~s ~nicn ~re

constructed trom information contained in tne 01ta
Dictionary/Oirectory. The microprogram allows for auto~atic taobin)
from field to field, automatic as well as manual duplication of
fields (from the previous record in the fOP~) ana auto~atl=

insertion of RECOHD identification information. the microprogra~

cOrtlr'lunicates with tne HP3000 in d bacl<grouno rnode with oUfterin~ ~nd

accepts keying in foreground mode. This results in instantaneous
response at the keyboard independent of loaa on tne HP3000 ~ 3n~

also reduces the orocessing drain d~ta entry ~ould normally place on
the HP. During on-line verification , the record oeing i<eyec is
matched aqainst tOe corresponding recora previously key€o duriD~

input. Any discrepancies are resolved t.hen.

Co~oleted data entrY oatches are autoffiatically routeo to the
aoprooriate masterfile basea on information containea in the
:~asterfile Tracking tile (this includes automatic SUbmission of Ib v

bound Jobs:for tnose masterfiles resident on the IbM).

D l\ TAP Po ~p ARATI ON SUoS i STF';JY'

---~~---~~- ----~----

1he Dat~ Preparation SUbsystem supports oackgrouno ed1tinq and
inventory of masterfiles, interactive error corrections ana various
listing utilities. All modules of tne SUbsystem gain inforUlatio~

frOM the Oata DictionarY/Directory and the Masterfile TracKin~

Control file.

toe batch E;DITU~ \\orks on· a complete masterfile or a selected
SUbset, sorts the tile by record id and other key tielas, t~en

produces a formatted report. Tne report is constructed usinc tie11
names as colllmn neaders ~nd edit specifications (acceotaole a~t3

ranoe) for flagging of data errors - botn fronl the data dictionary.
Toe ~OITOR Knows wnere to pick up e3ch tielo on a record oasea o~

the field start column and length information, also in the D~t~

B-10.~7

Dictionary. A similar version of the EDITOR exists on the Ib~/37U ,
written in PL/I, also running off of the Data Dictionary. fhe I~~

resident version is run by joos automatically submitted froffi tne HP
if the ~asterfile tracking file says the file's primary residence 1s
toe IfH~.

Ine interactive ~kROR CORRECTION procedure is a for~atted screen
oriented proqram which directly updates an H~ resident masterfile.
M3sterfiles ar~ maintained as KSAM tiles on tne HP, so a particular
record to oe corrected can be located very rapidly using f'R~Au8YK~Y

or fFINUBYKEY. Once desired modifications are made to the recora,
it's f'lJPi)ATt:d on toe KSA~' tile. A log ot corrections is malntainej
tor oacKino them out, or reaoplying them in tne case ot systeTt
tails.

r~e batcn IHV~NtUrl~ orocedure takes a masterfile, sorts the file oy
q~tient nun,oer, then oerfor~s an inventory ot oata records co~parin~

tne data or~sent to tne e~pectea data structure. Inis expected dat3
strl1cture - '.·;nich records comprise n unit, and when/ho ... many units
are to occur - is constructed based on the uata Diction~ry fNCOU~rE~

a n (j I Jt'J 11 5 t r u c t uri n g r ecor d s • The I NVE NT0 RY proc e d u r e run s i ')
eiti)er a total inventory listing mode or in an exception rrlOde ­
listing o~ly ratients witD missing records.

10is SUbsystem also includes maintenance ana reporting facilities
tor ~ Dec01e file - a KSAM/3000 baserl data aecoding taole. An lSA~

version of this decode file is maintained on the IB~/370 through tne
HP resident maintenance system - any updates made to the HP file
c~use a 10n to oe automatically suomitted to tne IbM for identi:al
Ui)(iCltes to ne made there.

D t\ TA I) leT 1(I ", AHY/ () I K f:; C l' 0 HY SUBSYST ~; fil

--~------~---~-----~ -~~------

Tne Data l)ictionarY/Directory suosystern includes an interactivfl
forrlatted screen orier-ted uU/Dir definition and modification
proard~, aUlom~tlc codirg manual ~eneration, a aata entry FJR~

detinition intertace, various reportinq utilities and a translate/
export mooule to translate the Uata Dictionary into its IB~/310

version and export a copy of it automatically.

'fne definition/modification program uses a tormatted screen (not in
block mode out under program control) which is set up with an
i~oente~ tlier~rchy corres~onding to that of the data dictionary. The
torillatted screen is traversed In a manner corresponding to the tree
structure of the data dictionary. When changes are to be nade, the
user simply defines toe' path down tne tree to the item to oe
cnanged, then eIlters the information to be modified.

Renorting utilities eXist which produce a comprehensive list of anv
Data Dictionary's content, study encounter structure, as ~ell as a
codinq ffianual to aid data coding (prior to data entry).

B-10.08

The translate/export modUle traverses any data dictionary, produces
a sequential version of it and ships this to the IBM/370 where it's
used by nlany IBM resident DBMS interfaces (as well as the batCh
editor).

DATA MANAGEMENT SUBSYSTEM
---~ ---------- ---------
The Data Management subsystem includes the Masterfile Tracking
control file maintenance/report utilities, masterfile movement
utilities and an IMAGE schema writer/loader. The entire system is
controlled by a top level program in the Data Manage~ent system ­
called the utility controller - which runs as a very high level
language interpreter.

The Utility controller program of the subsystem accepts English like
commands, parses them, and takes action on them by calling one of
many proqrams in the system (using the MAIL intrinsics to pass
information to the called programs).

The Masterfile Tracking control file contains information on the
primary residence of all lliasterfiles, predicted numoer of rec~rds in
the masterfile, and a variety of other accounting/security types of
information. In addition, information on the existence of an IMAGE
data base, or any other IBM resident DBMS, and the date that it was
last loaded, Is contained in this file. This information is very
useful, not only to tell how current a data base is, but also,
Whether it already exists, and should be purged before Deing
created(recreated).

Masterfile movement utilities are also available as a part of the
Utility controller. The command MOVE HPO<masterfile> TO OS<dsname>
is SUfficient to prompt the system to automatically submit a job to
move the masterfile namea to an IBM/370 resident data set (building
it if necessary). The reverse command is possible, and in fact,
movement between any of 4 logical origins/destinations is possible.
The jobs to move the roasterfiles in any direction are submitted
automatically to MRJE/3000.

The system includes interfaces to many IBM/370 resident DBMS
packages, and to the IMAGE/3000 system. The IBM resident DBMS
interfaces all use the Data Dictionary to create the equivalent of
an IMAGE schema, then later in the same jOb, actually load the
masterfile desired into the DBMS. The IMAGE/3000 interface SUbmits
a background jOb to run 2 programs (with standalone sorts between)
which write a schema, then actually load the data into the created
database. The detailS of this set of programs are covered below.

IMAGE/3000 SCHEMA WRITER/LOADER
---------- ------ .------------
The IMAGE Schema writer 1s an interface program which reads the data
dictionary, and primarily constructs appropriate schema definition
statements from the data FIELD types. The procedure will create a

a-10.09

scnema containing all LwiTs of a study or only selected UNlfs
depenning the request ~ace to tne front end 9rogra~ (run by utility
cJntrol1er).

Iotdl output from the prooram includes tne corupleted schema readv
for proCe s sin q b 'I () bSCH~ t·~ A• PUB. SYS, a de taIl loa d f11 a p, 3 nd a s U 11 III ~ r y
oroat;=j set loa d £11 a p • The s c he 1\a i s pro duCed by bu i 1a i n ~ t ~ :>
internediRte files - one tor the SET part ana one for the l1EMS part
of tne scherr.d. As tne {lata dictionary is traversed - accuroulatin::J
all ~IELDs belonging to each UNIT, the sChema ITE~ cart for e~cn

field is ~'rltten (Kno'lfin~ :,;hat type the f'I£Ll) is, its size, etc.).
At the san! e time, d post i nq tot ne S[-; T 0 art is tiad e for t ne FIt: L[I •

i3ctl Data Dictionary UNIT is considered to oe equivalent to an I~AGE

Oata set, so whenever a new UNIT is started in the traversal
ooeration, the a9propriate S~~T defir)ition is written, tollowea oy
its FIELD or item entries. the outfer position for the Loader
procedure is also calculated for eaCh field in each aata set. rne
detail load map file qenelated by the schema writer pro~ra~ consists
ot a record for each r'leld in the data dictionary containinq the
fiela's input bufter dodress, tne IMAGi data tyoe, the field's
parent Recore Id, starting column, lengtn, and deCOdinQ information.
I'rai::; inforl;lation is sufficient for lRter postina ot the rjata to tlie
odta base. Tne summary load map produced contains an entry tor eaCh
data set being created, ~ith the numoer ot fields in the data set,
tne total bufter size (used for acquiring the proper si7.e extra d3ta
seYl:lent in the Loaaer prccedure), and the name and sequence nU(T&;:,er
of toe data set.

Aftpr the Schema '~riter produces the Schema, Detail load map 3nd
summary or data set load map, the DBSCHEMA.PUB.SYS proqr3m is
invoked to process tne new schema(FILE equation beinq issued by the
schema writer) • At t e r t t, e root file is created, the DbUT ll, • PUt) • S 'i. S
prouram is executed, to create the new data base. Finally the detail
load map is sorted by Record id, then start column and the
masterfile is sorted bY patient id, then record date, then recora
in. The Loader procedure is now ready to run.

1he Loader program reacts the sorted Oetal1 Load map, and constructs
a tree structure containing all information to convert/decode frou
the rllasterfile records into a logical oufter to be pasSPd to the
[~AGE data base. Tne procedure also reaas the Data Set loaa m~p,

and creates an extra oata segment of proper size to act as data
accumulation areas for each of tne Data Sets. Tne proqrarn tnen
begins reading the masterfile and converting/movinq the data to tne
appropriate extra data segment location. ~hen a logical oreakpoint
in tile data occurs(ctlange of patient, or cnange of date), all extra
data seg:"l~nts which have been posted, are accessed, posting tne'ir
contents to the I~IAG~ data base. Various satety cheeks are built in
to prevent overwriting of the extra data segment buffers, i.e., if a
record memoer of a buffer has already oeen posted, and it's about to
be posted again, the Duffer is cleared first (this should not happen
normally due to tne U~IT structure of the Data Dictionary).

B-l~.l~

Durinq the loadin~ process, blanK or missing data 1s noted, by
posting a bit in a Ml~SING field{a field which is automatically
qenerated for each data set) which corresponds to the sequence
numc>er of tne tield in the data set. This MISSING bit is to be used
oy various application ~rograffls accessing the data base to ensure
proper statistical treat~ent of missinq data. Each UNIT occurrence
Is also categorized into one of the ~NCOUNTERs at the Data
Dictionary, witn the categorization being also posted to an
t: ;.J C{J Ur~ Tt: R fie 1dIn ea enda t a set (t his a los in da tar e t r 1e valla t e r) •
03td ~nich is to oe oecoded for reporting purposes, is decoded
during the load operation - tne Decode taole field name and field
vallIe (or encode) are concatenated, then used as a KSAM key into the
decode file - retrieving the text to oe inserted into the oata base.

a-10.11

	Papers / Presentations
	Faster with Fast KSAM
	A Data Dictionary/Directory Driven Clinical Data Management System

