A DATA DICTIGNARY/DIFECTCRY VDKRIVEN CLINICAL DATA MANAGEMEMNT SYSTEM

ERIC S. HERBEL
FJeChST-RULSSEL PHARMACEUTICALS, INC.

ARASTEACT

A clinical researcn c¢azte manajemnent system was developed which is
driven by a nierarchical cata pase form of a datsa dictionary using
varianle lengtn record KS$im files. Tne actual structure of the dats
aictionarv (the nierarchical data pase approach, and variable lenatn
lists i plemented in KSAM variable 1length record files) is
e .prasirzed. Tne system incluaes data entry, editing, on-line
corrections, & variety of 1b6#/370 resident intertaces, and a
Qerneralized IxpGE cata case schema write/loader, All of the systen
Toouiles Aare driven py the data aictionary. Details of the 1IMAGE
interface are also emgnasized.

UUTLIHE

. Tne Data bictionary/Lirectory concept in general
. and the HP imgplenentation in detail

. Overview of tne clinical data management system
. Data Entry =- key to disk emulation
. Data Preparation - editing, corrections, listing, etc.
. Data Dictionary - definition, modification, reporting
. Data kManagement - Image schema writer/losder, interfaces
to IBK/370 DBMSs.

. IMAGE/3000 schema writer/loader in depth.

DESCRIPTION OF DATA DICTICNARY/DIRECTORY

Comirercially aveilaple Data Dictionary/Directory systems
are typically characterized bv:
. lidentification of each element or field (name, aliases,
description)
. tyve specifications for each element (numeric/character, etc.),
field size and other pnysical descriptions

B~10.01

. Treporting specifications for tne tielgd (output toruat,
and nefault lavel)

. Cats editing criteria - a range or table Ot acceptaole values

. administrative information sucnh as wno can access various
elements, and information on «nich anplications use sgpecific
elerents

. and maintenance responsipility for the elemnent,

A data directory 1is an extension of the data dictionary concept
intended primarily for machine processing of tnhe neta cata(data
which defines data). Cn the other hand, a data dictionary is
intended to aid in numan understanding of tne data. Apolications of
the directory concept rave included automatic cGeneration of data
cefinitions (screma) for 1inout to various DBMS.

I4PLEMENTATION OF A DATA CICTIONARY/DIRECTORY ON THE HP3000

Most data dictionary systems currently 1in use appear primarily
concerned with aiding the DA1A BASE ADMINISYTRATOR and other HUMAN
data dictionary users. ve vere certainly concerned witn this aspect
of the use of the data dictionary, bout placed more emohasis on the
DIRECTORY side of the concept. The net result of this erphasis shift
is that the majority of application programs in the system are
DRIVEM oy the central Dats Dictionary/ Directory.

Ine Data Dictionary/Directory implemented on the HP contains most of
tnhe traaditional elements mentioned above, but it does not presently
contein security information or pointers to apolication crogranms.
However sonme significant edditions were made.

First at the element or field level a number of modifications
vere nrade,

. REY fields are noted; this will cause an IMAGE automatic
master to be created for it

. On-line as well as backaround edit specificatioOns were addiesi
facilitating editing during data entry or later in background

- A link to a decode table for the field was included,e.a. the
decode file taole entry name(used as a prefix for its KSAM xevy).

. Should the field be verified during data entry?

- Should the field be automatically duplicated from a previous
record in the data entry form(set of defined records)?

The secona and most important set of additions center of the
masterfile’s structure. This structuring information includes
pnysical RECORD definitions, logical UNIT definition, and when these
UNITs occur, or the ENCOUNTER definition.

RECORD content, i.e. which elements make up each 80 byte mesterfile
record (this 1is tne data entry medium); also where each field

starts on the record, and whether it’s repeated as a contiguous
block or array.

B-10.02

Logical UNIT structure, i.e. which 80 byte records make up a logical
UNIT of information (later used as the entity equivalent to an IMAGE
data set)., These 1logical wunits are generally entered together
during data entry (called a FORM at data entry). Various key

fields appearing on every record aid in the logical connection of
records in a UNIT,

These structuring entities are sufficient 1in most cases to process
the data, i.e. define the data entry form, define specifications for
the batch editor, and define the schema for an IMAGE data base.
However, we‘’ve gone one step further in the structure progression =
adding the element of time, i.e. when a group of logical UNITs are
to occur. This is called an ENCOUNTER definition, corresponding to
a clinical visit encounter between a subject and physician. During
each visit, various UNITs of 1logically related data are to be
collected, so an encounter consists of a 1list of logical UNITs. To
facilitate automatic assignment of UNITs to a given encounter, an
ENCOUNTER CLASSIFICATION EQUATION is included = which defines
membership criteria, e.g. VISIT NUMBER=S or Days into study is
between 4 and 7. This structure actually captures the final
dimension necessary to fully define a clinical study to application
prograns which will categorize, inventory and even analyze the body
of data.

ACTUAL DATA DICTIONARY/DIRECTORY FILE STRUCTURE

To facilitate most efficient wuse of the entire system = a true
network structure was chosen., As a result, individuals defining a
new data dictionary/directory can ‘"point" to any entity already
defined, at either the UNIT, RECORD or FIELD level. This automatic
GLOBAL capability has greatly enhanced the use of the system. This
has also encouraged use of STANDARD UNITs or RECORDs across studies.

The data dictionary/directory system 1is implemented in a set of
variable length record binary KSAM files(except the field level fille
which 1s fixed length),., Each KSAM file In the set corresponds to a
level in the structural hierarchy.

The linkage between the various files in the hierarchy is maintained
by a variable length array of pointers with associated information
pointing to the next lower level file, The pointers are in the fornm
of KSAM keys 1into the appropriate subordinate file, Selected
information belonging to a subordinate flle is often stored along
with the pointer to the record(i.e., the Fleld start column is
stored at the RECORD file level). This convention was adopted to
facilitate use of global information, i.e. information used by many
studies or records, and information thought ¢to change most
frequently was stored at a higher level 1in the hierarchy. As an
example, the 1length, edit specs, label, etc. would probably not
change for the field blood pressure between studies, The starting
position on the 80 byte record probably would change from study to
study, so the starting column was stored at the RECORD level in the

B~10.03

| STUDY Subfile |

| |
| |
{ |
: 3 X b 3 :
' 3 ¥ * l
| 3 ¥ ¥ I
| * | ENCOUNTER Subfilel| * l
| X * * '
| ¥ * x '
b 4
l -*- - ---f-- -----------------J
[TuNIT subfile | | FORM Subfile |
,f , N
| * * |
| * * |
: } RECORD Subfile | :
| L K X R X X K X R K X X X ¥ ¥ ¥ X ¥ ¥ N] '
|
I |
: | FIELD Subfile [:
' LA L L R X K X ¥ % X X ¥ ¥ N ¥ X X ¥ ¥ ¥3 '
| |
| |

Figure 1. 1Illustration of the data dictionary hierarchy.

hierarchy, so many RECORDs can "point" to the same common blood
pressure definition.

The STUDY 1level file records contain descriptive fixed length
information about a clinical study(masterfile), as well as three
variable length pointer stacks. These three stacks contain
Character type keys to the attached UNITs, the ENCOUNTERS and the
data entry FORMs. The three stacks share contiguous space in the
record - with the base of the FORM pointer stack just after the UNIT
stack and so on. The Data Dictionary/Directory 1is generally
accessed from FORTRAN, so, the fixed length elements of the record
can be accessed after a record is read(using FREADBYKEY) simply by
an EQUIVALENCE of the items to the LOGICAL type buffer. The stacks
are accessed by actually moving a LOGICAL word at a time into a
LOGICAL typed TRANSFER buffer which has been equivalenced to a
character variable,

B~10.04

The ENCOUNTER file records contain a fixed length portion which
includes the primary key, the ENCOUNTER CLASSIFICATION EQUATION and
the top of stack counter, followed by a variable portion containing
the member UNIT stack. Each entry in the member UNIT stack contains
4 PL/I like structure (heterogeneous typed structure) containing the
UNIT key (character type) and the number of that type UNIT required
in the ENCOUNTER(integer type). Each entry in the stack is accessed
by moving a word at a time from the appropriate address in the
record buffer to a 1logical type transfer buffer. The character
variable followed by an integer variable are equivalenced to the
transfer buffer. Note that the encounter classification equation is
later parsed then interpreted by various application programs.

The UNIT file records are very similar to the previous level
records, 1i.e. a fixed length portion for UNIT description followed
by a variable portion for the attached RECORD stack (also containing
the number of each RECORD type required in UNIT). A new value is
added to the fixed length portion of the record = the global counter
= to aid in controlling use of the global facility. This is present
also at the RECORD and FIELD level. The counter is set to 1 if the
UNIT record 1is local, i.e. not pointed to by any other study, out
it’s 1incremented every time it‘’s pointed to. This allows detection
of 1its global status(to provide for a warning on the effects of
modifying it), as well as providing for local deletes. If an entity
is global, and it‘’s to be ‘"deleted", the global counter is
decremented, and the pointer to it 1is removed(the actual record is
not removed). If the counter is 1 and it‘’s being deleted ~ tnen
actually FREMOVE 1it.

The data entry FORM file is almost identical.

The RECORD flle record is basically the same, except that each entry
in 1its member FIELD stack contains a 1larger heterogeneous typed
structure, The structure includes the FIELD’s key(character), its
starting column (integer), the member of contiguous repeats of the
field on the record(integer) and whether 1it’s required (for editing
purposes).

The FIELD file record is the simplest = fixed length binary =
containing all the basic information such as type, length,
description(label), etc.

REASONS FOR USING KSAM/3000

The Data Dictionary/Directory could have been implemented using a
set of direct access files, with an index into the top most level
(study level) providing a table of contents. Pointers to
subordinate entities, e.g. pointers to all attached RECORDs in any
UNIT, could have been the actual record address in the subordinate
file. This approach would have been very efficient 1in tree
traversal time(data dictionary hierarchy traversal). Problems
associated with this approach are:

B-loﬂs

- MPE presently doesn‘’t support direct access variable length
records (variable length records being very important for
efficient implementation of the overall structure)

- broken pointers, i.e. bad record addresses are very difficult
to fix = probably requiring a dual pointer structure (pointer
to son from father and vice versa)

- A& garbage collection mechanism was needed - would have been
necessary to explicitly set this up

- the global use of UNITs, RECORDs or FIELDs would have become
extremely difficult to implement - one would need a separate
list of availabe entities with their record addresses,

IMAGE/3000 1itself could have been used to implement the data
dictionary (something occassionally done in commercial systems). The
straight hierarchical structure of any single LOCAL data dictionary
would have been implemented satisfactorily as illustrated in Figure
3.

The global entity concept would have been very difficult(impossible)
to implement using this structure, though. Also, information such
as Field start column couldn’t have easlly or efficiently been
stored at the RECORD level (no variable length records in IMAGE, or
compound items as chain heads).

The Data Dictionary/Directory was implemented in KSAM/3000 because:

« Vvariable length keyed-access records are supported, so
variable length pointer lists with associated information
1s possible.

. using keys as pointers rather than actual record addresses
greatly simplifies implementation of global entities and
security/accuracy of pointers.

« KSAM takes care of garbage collection automatically.

Traversing the tree structure using keys into subordinate files is
not as fast as direct access using a record address = but it’s close
(KSAM takes care of that). More importantly though, this small
disadvantage in speed is considerably offset by all other
capabilities gained (as stated above).

OVERVIEW OF THE SYSTEM DRIVEN BY THE DATA DICTIONARY/DIRECTORY

The clinical data management system implemented on the HP3000
includes:

« 4 key=-to=-disk emulating DATA ENTRY system

- a set of DATA PREPARATION modules, including a batch editor,
on-~line error corrections, a masterfile inventory procedure
and various listing/reporting utilities

- the DATA DICTIONARY/DIRECTORY subsystem itself - containing
an interactive.formatted screen definition/modification
procedure, along with many reporting and auxiliary use

utilities

. Aand the DATA ®AJAGEMENT subsystem which contains segrents for
masterfile trackinc(orimary residence(lIps# vs HP), statistics,
etc.), mastertfile novement, and an TMAGE schema writer/loader
(Interfaces to Ib¥ resident DBMSs also exist).

All elements of the system are generalized and function tor anv
study nased on intormation gained primarily from tne uata
bictionary/ Uirectorv(sore modules are implemented using otner
similarly constructed central files, such as tne masterfile trackingj
file),

DATA ENTKY SUBSYSTEH®

Inis 1is a key to disk emulating "keyouncn" operation which supoorts
an input/verify data entry cycle, Data 1s Kkeyed on 3
micro-processor controllec data entry terminal(the standarc HEZh43A)
utilizing a microprogran downloaaed trom the HP3000. The cate is
keyed in 80 column card images using card wasks or KFUOWMS wnicn are
constructed from information contained in the vata
Dictionary/Directory. The microprogram allows for automatic taobiniy
from field to field , automatic as well as manual duplication of
tields (from the previous record in the FUPM) ana sutomnatirs
insertion of RECORD identification intormation. 7The microprogran
comrvnicates with the HP3000 in a background mode with oufterindy an:
accepts Keying 1in forearound mode. This results in instantaneous
response at the Keyboard independent of locaa on the HP300OH - ana
also reduces the processing drain adata entry would normally olace on
the HP, buring on-line verification , the record being keyec is
matched 4against the corresponding recora previously keyea duriny
input, Any discrepancies are resolved then.

Completed data entry opatches are automatically routed to the
aoproonriate masterfile basea on information containea in the
masterfile Tracking file (this includes auvtomatic submission ot [nw%
bound Jobs:for tnose masterfiles resident on the 1bvm).

DATA PREPARATION SUBSYISTEN

The Data Preparation subsystem suoports oackgrounc edaiting ans
inventory ot masterfiles, interactive error corrections ana various
listing wutilities, All modules of the subsystem gain information
from the Data Dictionary/birectory and the w~asterfile Tracxina
Control file,

Tne batch EDITUR works on -a complete masterfile or a selectesd
subset, sorts the file by record id and other key tielas, taen
produces a formatted repcrt. The report is constructea usinc tialna
names as column neaders and edit specifications (acceotable aats
ranae) for flacginyg of data errors = botn from the data dictionarv.
Tne EDITOR knows wnere to pick up each fiela on a recorad passa on
the field start column and length information, also in the Data

B~10.07

Dictionary. A similar version of the EDITOR exists on the 1B8%/37v R
written in PL/I, also running off of the Data Dictionary. The Ipv
resident version is run by jobs automatically submittea from tne HpP
if the Masterfile tracking file says the file’s primary residence 1is
the 1IhnM,

lne 1interactive FKEKRUR (ORRECTION procedure is a fornatted screen
oriented program which directly updates an HP resident masterfile,
Masterfiles are maintained as KSAM tiles on tne HP, so a particular
record to ne corrected can be located very rapidly using FREAUBYKEY
or FFINDBYKEY, (Unce desired modifications are made to the recora,
it’s FUPOUATED on the KSAFM file, A log of corrections is maintaines
tor packing them out, or reaoplying them in the case of systen
fails,

Ine bvatcn IHVENTURY Drocedure takes a masterfile, sorts the file oy
vAtient numoer, then verforms an inventory ot data records comparing
the data oresent to the expected data structure. fTnis expected dats
structure = wnich records comprise a unit, and when/how many units
dre to occur - is constructed based on the Data Dictionary EnCOUNTER
anag UMIl structuriny records. The INVENTORY procedure runs in
either a total inventory 1listing mode or in an exception mode -
listing only patients with missing records.

Inis suocsystem also includes maintenance ana reporting facilities
tor a Decode file = a KSAM/3000 hased data aecoding taple. An 1SAw
version of this decode file is maintained on the IE&Y/370 through the
HP resident maintenance system = any updates made to the HP file
Cause 4 J1on to be automatically suomitted to the I8 for identical
undates to e made CLhere,

Bara DICTIONARY/DTIRECTORY SUBSYSTEM

Ine bata pictionary/pirectory supbsystem includes an interactive
foruatted screen orier.ted v»DL/Dir detinition ana wmodification
proaram, automatic codirg manual generation, a data entry FURY
detinition intertace, various reporting utilities and a translate/
éxport wmoaule to translate the Data Dictionarvy into its 1BM/370
version and export a copy of it automatically.

Tne definition/modification program uses a tormatted screen (not in
block mode = but under program control) which is set up with an
indented nierarcny corresponding to that of the data dictionary. The
ftormatted screen is traversed in a manner corresponaing to the tree
structure of the data dictionary. when changes are to be nade, the
user simply defines the: - path down the tree to the item to bpe
cnanged, then enters the information to be modified.

Reporting wutilities exist which produce a comprehensive list of any

bata Dictionary’s content, study encounter structure, as well as a
coding manual to aid data coding (prior to data entry).

B~10.08

The translate/export module traverses any data dictionary, produces
a sequential version of it and ships this to the 1BM/370 where it°’s
used by many IBM resident DBMS interfaces (as well as the batch
editor).

DATA MANAGEMENT SUBSYSTEM

The Data #Management subsystem includes the Masterfile Tracking
control file maintenance/report utilities, masterfile movement
utilities and an IMAGE schema writer/loader, The entire system is
controlled by a top level program in the Data Management system =
called the Utility controller = which runs as a very high level
language interpreter,

The Utility controller program of the subsystem accepts English like
commands, parses them, and takes action on them by calling one of
many programs in the system (using the MAIL intrinsics to pass
information to the called programs).

The Masterfile Tracking control file contains information on the
primary residence of all masterfiles, predicted number of records in
the masterfile, and a variety of other accounting/security types of
information. In addition, information on the existence of an IMAGE
data base, or any other 1BM resident DBMS, and the date that it was
last 1loaded, 1is contained in this file, This information is very
useful, not only to tell how current a data base is, but also,
whether it already exists, and should be purged before peing
created(recreated).

Masterfile movement wutilities are also avallable as a part of the
Utility controller. The command MOVE HPD<masterfile> TO 0S<dsname>
is sufficient to prompt the system to automatically submit a job to
move the masterfile namea to an IBM/370 resident data set(building
it 1if necessary). The reverse command is possible, and in fact,
movement between any of 4 logical origins/destinations is possible,
The 3jobs to move the masterfiles in any direction are submitted
automatically to MRJE/3000.

The system includes interfaces to many IBM/370 resident DBMS
packages, and to the IMAGE/3000 system, The IBM resident DBMS
interfaces all use the Data Dictionary to create the equivalent of
an IMAGE schema, then 1later 1in the same job, actually load the
masterfile desired into the DBMS. The IMAGE/3000 interface submits
a bpackground job to run 2 programs (with standalone sorts between)
which write a Schema, then actually 1load the data into the created
database. The detalls of this set of programs are covered below,

IMAGE/3000 SCHEMA WRITER/LOADER

The IMAGE Schema Writer is an interface program which reads the data
dictionary, and primarily constructs appropriate schema definition
statements from the data FIELD types. The procedure will create a

B~-10.09

schema containing all LWwITs of a study or only selected UNLTs
aepending the request mace to the front end orogram (run by utilitv
controller).

fotal output frow the program includes tne completed schema ready
for processina by DbSCHEMA,.PUB.SYS, a detail load map, 3nd & summary
or aqata set 1load wmap. The schema is produced by builaina tad
interrmediate files = one tor the SET part ana one for the l1Ew~s part
of the schema. As tne aata dictionary is traversed =~ accumulating
all FIELDs belonging tco each UNIT, the schema ITEM oart for each
field 1is written (Kknowing what type the FIELD is, its size, etc.).
At the samne time, a vosting to the SET oart is made for the FIlELD.
rach Data PLictionary UNIT is considered to pe equivalent to an IMAGE
Data Set, so whenever a new UNIT 1is started in the traversal
operation, the aopropriate SET definition is written, followea Dy
its FIELD or item entries, The onuffer position for the Loader
proceaure 1is also Calculsted for each field in each aata set, Trnhe
detail load map file yenerated by the schema writer projram consists
°or a record for each Field in the data dictionary containing tne
fiela’s input buffer acdress, tne 1MAGE data tyoe, the field’s
parent Recora Id, startin¢g column, lengtn, and decoding information.
I'nis inforwation is sufficient for later posting ot the data to the
data base, The summary locad mao produced contains an entry for each
data set being created, with the numoer of fields in the data set,
tne total buffer size (used for acquiring the proper size extra data
segment in the Loaaer prccedure), and the name and segquence numoer
of the data set,

After the Schema writer produces the Schema, Detail load map and
summary or data set locad map, the DBSCHEMA.PUB.SYS proaram is
invoked to process tne new schema(FlLE equation being issued by the
schema writer). Atter the root file is created, the DHUTIL.PUB.SYS
prouram is executed, to create the new data base, Finally tne detail
load map 1is sorted by Record id, then start column and the
masterfile 1is sorted by patient id, then record date, then recora
id. The Loader procedure is now ready to run.

The Loader program reads the sorted vetail Load map, and constructs
a tree structure containing all information to convert/decode trom
the masterfile records into a logical ouffer to be passed to the
[1AGE data base. The procedure also reads the Data Set loag map,
and creates an extra ocata segment of proper size to act as data
accumnlation areas for each of the Data Sets. The proaram tnen
pedins reading the masterfile and converting/moving the data to the
aopropriate extra data segment location. w#hen a logical preekpoint
in the data occurs(change of patient, or change of date), all extra
data segments which have been posted, are accessed, posting the’ir
contents to the IMAGE data base, vVarious safetyv checks are built in
to prevent overwriting of the extra data segment buffers, i.e., if a
record memper of a buffer has already peen posted, and it‘’s atout to
be posted again, the puffer is cleared first (this should not happen
normally due to the UWIT structure of the Data Dictionary).

B-lg. 1

Durina tne 1loading process, blank or missing data 1is noted, by
posting a bit in a mISSING field(a field which is automatically
Jenerated for each data set) which corresponds to the sequence
numoer of tne field in the data set. This MISSING bit is to be used
ey various application programs accessing the data base to ensure
proper statistical treatment of missing data. Each UNIT occurrence
is also categorized into one of the ENCOUNTERS of the Datsa
bictionary, witn the categyorization peing also posted to an
ENCOULTER field in each data set(this aids in data retrieval later),
Data wnich 1is to bpe ocecoded for reporting purposes, is decoded
dquring the 1load operation =- the Decode taple field name and field
value (or encode) are concatenated, then used as a KSAM key into the
decode file =~ retrieving the text to pe inserted into the agata base,

B-10.11

	Papers / Presentations
	Faster with Fast KSAM
	A Data Dictionary/Directory Driven Clinical Data Management System

