
Faster wltn FAST KSA~

by
Stephen M. Butler

Director of Data Processing
Paradise Valley Hospital

National City, CA

Being a hospital, we maintained a manual index to patient numoers. The

mecnanlcal device was overloaded (2dO,OOO in a 250,000 capacity Die­

bold), and the repair bills were worse.

During the analysis at the HP-3000 a prototype computerized Medlcdl

Index using IMAGE was written; but ALPHA or NUMERIC sequence searches

could not be used--who wants a sorted chain of 280,000+ entries. A

pnonetic search was implemented but the chain had cases of 2000+

entries. A generic key capability for the phonetlc-birtndate search

mechanism was needed.

The prototype index qave us the impetus to acquire the 3000. As the

conversion from a Honeywell 115 neared completion, KSAM became avaIl­

able. It had the capabilitIes needed:

1. Multiple keyed ISAM.

2. ~eneric Keys.

We claim to be the GAM~A test site tor ~SAM--if such exists. It seems

tnere -ere updates every other weeK-eat least we saw our SE! Finally

ttlere was a ve r s ion 0 f t< SA,., .Clean en 0 ug t") to at t empta loa d 0 f t ne

2bO,OOO+ records. It took 5 days for the disK drives to survive the

Sllal(e out test; but one of the other systems started acting funny. 500n

we ~ere ifl the GA~MA test pnase again. After several attempts to fix

tne bug, the SE took our test proqr~m and disappeared. (He claimed he

wouldn't CORle baCK until there was a version of KSA~ that would work on

h 1 S md c tl i ne ~)

Toe next ~eeK hp lal~ the update tape on OUT aeSK; we hao become past

masters of doinq KSAM updates. The s~'s parting comment was, "That 5

day load should be faster." "Did we get FAST KSAM?" "Can't say; but

don't tell anybody else."

The reload took 2-1/2 days. Not the 1000% improvement expected, and

tllece were more DUgS. So, we wranqled a day at the lab to find out wny

a particular DUg nad so many tacets and why it wab tAking upwards of a

month to fix a prOblem we felt was critical. A lot of information was

passed in botn directions, and thP. lab thanKPd us for being a Bf.TA test

site. ~lshed some~ody had told us soon~r!

faster with FAST KSAM

Toe new version ot KSAM WnS quoted to be the pr~-release version tnatwould follo~ the ~lT tollo~lng 1814. That was Feb. 9, 1978. It passedall our tests and 1s no~ on the 1814 M.l.l.

follo~lnq tips fro~ the lab, the load took 20 nours. ~ot bad for2~O,OOO records. In retrospect we are nappy to have piCKed KSAM.

KEXEXL.E

An understand1ng of toe KE~FILE w1l1 help 1n knowing ~hY the tollowinqtips work. A close reading of the new Appendix B in the KSAM manualwlll be useful.

First, the ~EYFILE record size Is one sector (128 words: 25b bytes).
Tne ca~L block Is described In FIGUR~ 1. The number of keys perrecord is the ~aln 1tem of interest.

CONTROL BLOCK (first bicd< in each key file)

Total file accr.ss
counts, used by
VERIFY command

4.------- specifies number of
keys defined for file

.------ identifies data file
associated with
key file

Oat::J File N"me

DatcfTime

Ver~i(lIl/f=i"

:: Reeol us in D~·llcJ File
;;[3'ocks in Of'lt;) File

:; Words in L;;st ihta File Block
D<:ta File Bk~ckin!1 Factor

Data File (,{'cord Sile

Intrinsic Calls
(each a nou!>!e word)

Ke'{ Blv~k f1!:~d Count£:r
Key block Wriu! 'Counter
Key Block Sr.,I;! Counter

~ <)

t
;; :(e'!'i

~

77

4·15

128

25·58

59-60
61-62
63-64

16;17

18-19
20-21

22
23
24

Word
0-3

fIGURE 1. CONTHOL 3S0CK lauout. N tzoe word 77.

8-04.2

Faster with FAST KSAM

Tne ~Lw::scauuaa bloCK n-3S one entry of B ~ords for each detined
key. The detailed layout Is in FIGURE 2. The most usetul items right
now are tne pointers to toe ~OOT KEY ~NTRY bloCK tor eaCh of the defined
keys.

bits = 0 1 3 4 7 8
\'/ord

15

Allernate
Key 1

prim.)ry
key

128

9

o
1

2
3

14
15
16

2
3
4

5
6

7

8

~ Disc Addrcss of noot Bloc:':
1

kcytype T key SilC

.. kcy sliJrtillq location

Df key hlochll1 filctor

lc key flag) :# of trl;e levcls I
reserved

• 1

T 1

• 1

T 1

I

r
additional t>ntrics for up rto 15 altcrnate keys

pointci to primary -­
key root block

(D=Duplica

locction in dilta r('cord --­
of primary kc'y'

location in d.HJ record --­
of ht alternJ~e key

pointer to 1st a!ternate --­
key root b:ock

FIGU~~~. KEY D~~~K!PTOR BLOCK. Each entry con-
si~:s of q words. The RESERVF.D area Is a
~ointer to the free list chain for this
Key.

The ~~IB~ blocks contain the Key values and pointers used to make
KSAM do its thing. A QuiCk look at f"IGURF. 3 ~11l show that a Key entry
is composed of:

1. DOUble-word relative record number of the KEY ENTRY
block that sequentially comes before this entry.

2. KEY value as it is in the Data Record. A
byte is at the end if the key length is odd.
slacK byte IS NOT initialized.

slack
This

B-04.3

Faster with FAST KSAM

3. Double-word relative record number of the data
record 1n the data file.

4. Double-word relative record number of the KEY ENTRY
block that sequentially comes after this entry.

FlGURC-' 3. K~V~ ~~ E~TRY. $ee text for description of
numbered items.

With two or more keys item 4 becomes item 1 for the next Key in that KEY
ENTRY bloCK, see Figure 4. Thus there is 1 more ~EY ENTRY pointer than
the number of active keys in that block. Since each KEY ENTRY has a
data pointer also, the number of double word pointers can be written as

2N + 1

wnere N is tne number of keys per KEY ENTRY bloCK.

Eacn KE~ ENTRY bloCK starts out with a double-word inteQer whose value
is the relative record number of that bloCK. The next wora nas a count
ot the number of active keys 1n this KEY ENTkY block. Subsequent
records within the same KEY ENTRY block do not have this information.
Tne key value within a KEY ENTR~ block can be split across the physical
blocks of the KEYf'ILE. Using reOPY to dump the KEYFIL~ with ·:~OKSAM;

OCTAL:CHAp· options wl11 allo~ a person to inspect the actual layout for
a particular file. Thus a person could simulate conditions that would
normally be hidden deep inside a large file. Unce you know the general
layout you will quiCkly piCK up tne specific pieces of information
neeaed to navigate through the KEYFILL.

f'aster ~itn fAST KSA~

FIG U? ~ 4. KEY I::: ~J TRY RL0 Cf\ • W0 r d s 1 & 2 con t a i nthe
relntive record number' for this block.
~·,ord 3' contains the number of acti ve
K-?"/5. ~iot ice how i terns 4 and 1 are
shdred by adjacent K~Y ENTRYs.

we nave sppnt upwards of two days at a time sifting through a KEY~'IL~ in
tnis manner in order to pin point KSAM bugs. On one occasion a bug
seemed to occur only on our 280,000 record KSA~ file. ~y DOSS bet a
milKsnake that I couldn-t simulate it with less than JOO records. I did
it with ~--but I first knew exactly what ~as happeninq.

F!GuR~ ~ can be followed to calculate the blocking tactor (BF) tor each
key. A specified BF is used as a minimum and Is adJusted upwards to
make full use of any remaining area in the last sector. The default SF
1s cnosen so that the ~EY EN~RY bloCK ~i11 span b sectors--l024 ~ords

(2048 bytes). If the KEY ENTH} block spans mor~ than 16 sectors (2048
wordS or 40~b Dyles), the BF is rpducea so a maximum of 16 sectors is
usee.

Wltn multiple keys the largest KEY ~NTRY bloCK sJze Is used to calculate
the SF for a 11 keys. Thus all KEY f:NTRY blocks occupy the same number
Dt sectors. Tnis along ~1th thp 16 sector maximum are by-products of
requirements tor using the KSAM extra data segment.

8-9)4.5

ICS a key size in bvtn
ES • key entry size in words
IF • blocking flCtor Cnumber of key entries per block)
IS • key block lize
FL· file limit in records
NB III number of seeton per key block
FS - key file ,ize in Hctors
r 1 - round up LJ. round down

eScl02~

(def2Ji~~

N

ES· LeKS + 1) /2J+4 4 2 words/pointer

.. 1~ fewest # words that contain key entry

BF specified?

Iv N
r F -= ~v:m n,J~b£'r? ----... error

Iv
as a (ES X BF) + 5 ••----3control words +2·word pointer

1
NB E' r 85/1281

1t ,"words in 5CCtor

BS c N3)(128 41-----optimum block Jize

1
BF c r (L (B5-5) /ESJ -1) /21 x 2· 4---- adjusted SF

I '

I
~ # key entries in block

1 ~ rounded to nearest even whole #"

N
FL s()ecifi~d? ----1
1V FL· 10~4 (dpfaultl

.....

Fs-crFl/BFl x2)xNB

t double # of "blocks fOI block splitting

FIGURE 5. C~lculatlng blocking factor (8F) and filesize (rS) for one key.

8-04.6

Assume a rile with 2 keys defined as:

KE\,· 0.1.53,12
KEY • 8.54,13.20

For Key 1:

KS:-53
FLa 1024 (default)
BF c 12

Calculation of FS:

ES=- L(53+11/2J+4 c 21+4 -= 31

BS=(31x12)+5 c 317

NB=r377/1281= f2.91c 3 sectOi'S

BS- 3x128 :: ~S4

-S F- r CL(384-5)i3 j J-H/21x2

- r(L12.2J-~) /21,..2

• r(12-1)/21~.2

• rS.Slx2 t= ex:! • 12

FS=(rl024/121 >:2) x3

a(r85.31x2;:'t3

• 516 sectors

For Kev 2:

KSc 13
FL-l024 (default)
BF::20

ES=L(13+1)I2J+ 4 c 7+4 =: 11

SS= (11x20) +S c 225

NB=r225/1281= rl.751= 2 sectors

BS= 2x128 I:: 256

-SF= f(L(256-S)/l1J -1)/21 x2

c r(L22.8J-1) 121 x2

c f(22-1) /21 x2

• fl0.S1 x2 a 1,)(2 c 22

FS=(rl024/221)(2) x2

.(f 46.S1 x2) x2

• 188 sectors
1--4

Since key 1 has t'le largest block si7.e (384 words in 3 sectors), its blocking factor is unchanged_ The blocking
factor for key ') is ~dj:.'~ted so it ha~ thE: same block size. The following values are used:

ESc 11 ...---- ~~t!'y size calculated for key 2
BS~384 .. b~ock !tile I)f key 1 (now used for key 2, also)
FLc l024 .. default file size in words
NB~3 .. number of sectors needed for each block of 384 words

Calculate the new blocking factor for key 2:

-BF:: f(L(384-5/11J -1)/21x2
I: r(L34.4J ..1)/21x2
c f16.5 1x2 -= 17x2 c 34

FS=(r,024!341x2) x3
c(r30.11 x2) x3 ;: 186 $actors

SUln:ni":i ~l, •• ~\·.O filp. sizes and &Stirling tV'!" sectors for control "net key descriptor information, the total file

size in sectors is:

~16 + 1EtC) + 2 :; 70·\ sp.cturs

·The .algorithm to calculate OF can be explcsscd more simply if the result can be checked for an even
numlJcr:

BF;:LBS-5/ESJ If BF is an odd number, set UF=Uf-l

FIGURE 6. Calculating file size (FS) for roultlple
keys.

B-04.7

Faster with FAST KSAM

FIGURE 6 shows how the size Of the KEYFILE is calculated. Since eachblock can be a mlnlmun of half fUll, twice as many KEY ENTRt blocks areassigned as would be needed if each block were full.

KSAM
Extra Data Segment

Data used
by VERIFY

Current data record,
& key comparison area

Current dato bl~c~ ----+

~1 key block PH b:.;ffer

~

STATISTICS
CONTROL BLOCK

&
KEY DESCRIPTOR

BLOCK

Working Storage

Data Block
Buffer

Key Block
Buffer

Key Block
Buffer

•••
up to 20

Key Block
8uffer~

A (approx. 1~K bytes)

B (maximum 4K words)

C # of key block buffers
x kcy block buffer sizc
(maximum size per blC'ck
=4K bytcs)

Total Extra Data Segment sizc = A + B +C (maximum 32K byte!;)

FIGURE 7. KSA~ XDS.

8-04.8

Faster with FAST KSAM

The new features of FAST KSAM can now be put to use. An extra data
segment (XDS) Is used to handle all I/O to the KSAM file. The size of
this XDS is limited to t6~ words. Approxiametly 1-1/2~ are used for
overhead and control information. Only one buffer Is used tor the
DATAFIL~: it has a maxlmuro of 4K words ana Is the size of one bloCK from
the DATAFILE. We use a program that calculates the best BF that w11l
fit in 8 or fewer sectors so the data buffer will be lK or less. The
rest of the XDS can be used for KEY ENTRY buffers.

To find how many Duffers could be used (all calculations in words):

1. Subtract the J-l/2K of overhead.

2. SUbtract the size of the data buffer. Lets assume
IK.

3. Divide what's left by the size of a KEY ENTRY
block--default is IK.

4. Round the answer down to the next integer.

So, (16K - 1-1/2~ - lK) / lK = 13 buffers.

To get them:

:FILE ksamfile;DEV=,,13

It this would cause the XDS to be larger than 16K words, KSAM will auto­
matically decrease the number of buffers.

Since KSAM does have a fairly good algorithm for choosing the default
numoer at key buffers (see FIGURE 8), once the file has stablized you
may wisn to restrict the use of the FIL~ equation to loading or other­
wise maKing large numbers of changes to the file. If the tile Is empty,
KSAM will default to the minimal number of buffers for the type ot open
specifIed. For this reason you should specify the number of buffers you
will actually need as K5A~ will not allocate more buffers as the file is
fllJ.ed.

Eacn process that opens the KSAM file gets its own XDS. The number ot
bufters in tnese lOSs are dependent upon thp. type of open specified and
tne numoer of keys In the file at the time of opening. Therefore, these
XOSs could nave diftering numbers of key buffers.

R-04.9

Faster with FAST KSAM

Access Type Buffers Assignc:':

Read Only Access 1 buffer per level in prim3ry key structure

Write Only A::.:ss 3 buffers per primary key + 3 buffers per alternate key + 3 buffers

Other Access
1 buffer per level in + 1 b~lffer per level 3 buffers

(Rcad/\Vrit~or +

Update)
primary key structure in alternate key stl'uctll/e

(up to a maximum of 20 buffers)

FIGURE il. Default key buffers allocated at FOPEN.

1)11 PI· J cAtES

Toe other ISA~ packages that 1 am familiar with do not allo~ for dupli­
cate keys. At first glance, one would think it is a blessing that KSAM
does; but to paraphrase the LAB: If there are more than 10 duplicates
for a particular key, then don·t have this key or make it unique.

wnenever a key is added to the file it is added after any duplicates
tnat eXist for that value. KSAM must search the KEYFILE to find that
Idst entry. A START causes a search tor the first entry.

Two ot tne most common ways at maKinq duplicates unique are:

1. ~ut a time stamp (HR:M~:SS) after each key. for
calls less than 1 sec. apart, this ~ould still
leave tnem duplicates.

2. Put a copy ot the primary key after the other keys.

In CO~UL the primary Key must be unique. In the ~edical Index case it
was 7 bytes lonQ so we were not any worse otf than using the tl~e stamp.
Another method will be proposed in the E~HA~CEMEN" s~ct10n.

8-04.10

F" as t e r IN it tl ~','\ ST 1\ SAM

A stand-alone environment 1s not reddily available on our system. The
following tlmlnqs snow notra CPU seconds and WALL TIME to load 1u,000
records into an emoty ~SA~ tile.

Default Buffers 13 Buffers

KSAM expected duplicate
keys and duplicate keys 1111/5333 533/1010
were loaded.

KSAM expected duplicate
keys; but all keys loaded 870/4627 326/484
were unique.

KSAM expected unique
keys and unique keys 1183/5992 389/567
were loaded.

FIGURE 9. This shows the CPU seconds/WALL seconds
to load 10,000 records into an empty KSAM
file. Three keys were used--7 bytes, 20
bytes, and 43 bytes. The BAS1C 1J}"ocedures
were used to load the file.

By correctly specifyinq the numoer of Key buffers and utilizing unique
Keys there ~11l be a marked improvement in throughput. But the other
benefits even out~eigh this.

An example please: two users will access a KSAM file that has 4 records
1n it. we will assume t defined key and a Kf.Y EN'r~~ blocking factor of
4. Therefore, the ROOT K~Y ENTRY block 15 full. Any new records added
to the file will cause a key-block-spllt. we proceed:

1. Both users open the file for shared access.

2. User A LOCKs the file and reads the first two
logical records.

B-04.11

3. User A UNL,JCf<.s tt1e flle -3nd User ~ I,()C~s it.

4. user f.\ ~ritps ~ lecord whose loqical value places
it. IIi •

.> • ' ; s € r H I It. L 1..1 CK5 t h ~ f 1 1e an 11 post 5 t: t~ e l. ~.' c: d t ~ ~

L,)Ulfer~.

o. Tne tile now has 1 K~~ ENTHY in the RUOT bloc~.

this points to two other bloCKS. fhe first OlOCK
contdlns the keys User A just redrl. The second
UlOCK contains the two keys User A expects to see.
In actual practice he should get the record that
user B just posted.

7. User A LOCKs tne file again and calls for the next
RF.AD (sequential ot course).

8. The next KEY E~TPY that User A would previously
have used would have been t3 in the ROUT. At ledst
that is all that KSAM knows. ~ut the kOOT now has
only one entry. Since the 3rd entry no longer
exists we are at the end of the tile, so return an
EOF condition.

User A was lucky. If there had been many KEY ENTRY blocks and User A
had been aown several levels, tne following possibilities could have
happened (we have seen results to indicate they have happened to us):

1. The current blOCK would no longer be included In
the key structure; but tne process Is not aware
that is has been placed in a tree buffer list, so
the process uses it.

2. The same for a previous level; ie, the ROUT or one
of the intermediate levels was moved away from
where we expected it atter the last access.

3. The current or a higher level was reshuffled. All
blOCKS are active; but not necessarily in the same
tree structure as before.

we turned this In as a bug--and promptly got lauqned at. Th1s is one of
those dubious features we all enjoy. KSAM will not keep track of any
reorqanization that may occur while the tile Is unlocked. The butfers
ace re~reshed by the physical blocks that were last used 1n the XDS.
K~AM ~~__QQL check to be sure that these contain the logical values
lciSt used. So, you QUlS.t. reposition the pointer yours.elf. You can do
tnat by using the STARt procedure with a relop of strictly greater than
tn~ Key tnat was returned In the last read even though a number of
Cndllqes may have occurred to the point of deleting the record last read.
Trd s 1 s a mul tl-user online envl ronment, r i9ht! Again:

8-9)4.12

Faster with FAST K~AM

1. LOCK the file.

2. Do a START using last key read and greater than
relation.

3. Now do that sequential READ.

4. If you were going to do a REAOBYKEY or a REWRITE in
random/dynamic mode, then items 2 & 3 are not
needed.

5. UNLOCK wnen done.

Tnat process can't be done witn duplicate keys. If the last READ was in
the middle of a duplicate key, the START would bypass the dUPlicates not
read. Unique keys are a MUST In order to do the above.

In the case of uPdates to the tile, one more item 1s needed--RECORD
LOCKING. Set aside one byte In the record to be a locked/unlocked flag.
Wnen a record is read prior to updating it:

1. CheCK that field--lf it is locked, then report it
as being lockea or work out a mechanism to hang
until it frees up. we don't like hanging up, since
a process might abort and leave a record flagged as
lOCked. It hasn't happened in 6 months at our
site, but? If unlocKPd, then continue.

2. Set the flaq for lOCK.

3. REwRITE the record.

Now you can UNLOCK the file and KNO~ that when you're rearty to update
tnat record it ~ILL BE the SAME. P.S. Be sure to reset that tlag!

If "e f 1nd t Ilfle bet we P. n this wrItIng and the] n t Prna t 10 na I me e tIn q , we
may have a set of COBOL copylibS to simulate this. We want KSA~ to do a
lot of the dIrty work for us, so:

1. It should automatically call thp LOCK for us if ~e

failed to. Of course, only we know ~hen to UNLOCK,
so this 15 only a oneslded benefit. It ~oula still
be useful.

l. The first call followinq a LOCK (~hether directly
or by 11) should cause a call to tne STA~T to
reposition the poInter, unless this Is a PEAOtjYKEY
or START or K~w~lTl 1n random/aynamlc mode.

Fast~r with FAST KSAM

J. force all keys to b~ unique by:
A. Assignloo a aouble-~ord integer as the primary

key.
b. Appen11nQ this inteqer (4 bytes) to the ena ot

~very key. (Uf course, if one Key ends at the
place the primary key takes off, then 1ust
increase tn~ lenQth ot that key.)

4. AIlo* record lockinQ (1f necessary, set aside one
byte) ie, a read with lock option.

11 everything else 1n KSA~ ~orked tne same, we ~oulo th~~ dptinp a next
step that would reuse space left by del~t~d recoras.

1 • The
two
A.

I::S.

record with a primary key of zero shoulr1 nolo
pointers:
lhe next 1nteqer to be usPd for thE' pr1mary key
(ie, EOF pointer).
The primary key value of th~ most recent rp~ord

deleted.

2. The alternate keys for primary key ot zero and all
deleted records should be set to HIGH-V~(,IIES except
for tne last 4 bytes ~hich would be a copy of the
primary tt:ey.

3. An E0F pointer ~ould be returneo UPO" reao1na d

record with HIGH-VALUES 1n all bytes except tne
last 4 of any key.

4. ~very delet~d record would havp the priffidry kE'y
value ot the previously deleted record. (~puSh

dOAn stacK or tree list Chain.)

~. whenever a R~~~ITT~ occur~ it woul~ ~e keyed ott Of
the primary K~y.

tl • ~"R1Tr: ~ 0 'J 1ci t 1r stu s e UP t ue t r e r 11s t cr. n i n
(, p tor e inc r ~ IT; en t 1ng the p r 1m a r y key.

You will notIce ttl'? ~novp haS be€ln sper1t1 p ej in su~:' ("4 n,dnner that "
user 01 t nP. cur r ~ n t "SA'" co u1d ~ r 1tea set n t J.; roc f' 'lll res to mn" e t\ ~ A ;0'

function dS suqgested. No~ for the bomt'srlell. "'~4'" dlreony at pf'nos d

c1~uole-*ord inteoer to ~ I(.E-Ys. It is f'or p ['ro~erly callE-d tr,e (1otn
recoro rOlnt~r.

III fl e J a l> fI/ 0 u 11 cot hp abo VPo, t h (' yeo II J ~: ~ 0 1tnt c1 fT; 0res i n. pIp I pve J
(ie, they wOIJldn't n~pn to use the ~'rll!ldry KE'Y).

1 • 1 hey co u1,., us f' t 11 Eo t:: U: t· 0 i n t Era s n(\ .., •

8-04.14

Faster ~ith fAS1 KSA~

2. They would neea to set UP a free list chain for the
DATAFILE (they already have one for the KEYFILE;).

3. they would have to keep tracK of the Key and record
number of the l~st logical record read. Then auto·
matically reposition according to the first set of
proposed enhancements.

4. They already append the record pointer to the keys
so no physical change would be necessary--as would
be it one of us users was to try.

5. In short, th~ lab nas all the information necessary
to do the jOb except for the free Chain list in the
DA1AFILE.

Whether or not the lab does this enhancement, we already do somethinq
similar by using the prImary key to append to all others; but ~e intend
to «rite the procedures necessary to make KSAM lOOK like our proposal.
Anyoody interested?

Tnere are some enh~ncements that only the lab can do:

1. A central XDS similar to the recent IMAGE update.
Only one XDS per tile no matter how many users are
using that same file. A small XOS may be needed
tor each process to keep track of the last logical
key value and other local data.

2. Implement la LOCKing similar to IMAG~s.

3. OK, let·s go for it! USE lH~ IMAGE CALLS TO HA~DLE

KSA~. This means:
A. A schema processor to look for data sets type ~

or KSAM.
8. ~e could have FAST sorted chains.
C. In fact ~e could now have sorted ~aster tiles

(just a KEYFIL~ to point to the Master set
entries).

u. n6~1~D would also tunctlon as STAHT tor k5A~

tiles.
E. DBGET would take over as:

the current calculated DBGET would WOlk for
READBYK~Y.

a new mode for se4uential renus as opposed
to serial.

F. Tne DaLOC~ would give th~ same type of lockinq
sCheme for KSAM as is now being enhanced tor
IMAGE.

8-04.15

Faster wIth fAST KSAM

Tnese ideas w1l1 be implemented in our shop as far as possible. ~e plan
to ~rlte a set of routines that will handle both the KSAM and IMAGE
ploceaures. If the lab Deats us, we shall be very happy to conceed the
race!

8-04.16

	Papers / Presentations
	Faster with Fast KSAM

