Faster witn FAST KSAM

by
Stephen M, Butler
Director of Data Processing
Paradise Valley Hospital
National City, CA

BACKGROUND

Being a hospital, we maintained a manual index to patient numoers. The
mecnanical device was overloaded (280,000 in a 250,000 capacity Die-
bold), and the repair bills were worse€.

During the analysis of the HP=3000 a prototype computerized Medical
Index using IMAGE was written; put ALPHA or NUMERIC sequence searches
could not be used=-=-who wants a sorted chain of 280,000+ entries. A
phonetic search was implemented but the chain had cases of 2000+
entries. A generic Key capability for the phonetice=pirthdate search
mechanism was needed.

The prototype index gave us the impetus to acgquire the 3000. As the
conversion from a Honeywell 115 neared completion, KSAM became avail-
able. 1t had the capabilities needed:

i, Multiple keyed ISAM,
2. Generic keys.

We claim to be the GAMMA test site for KSAM==if such exists. It seems
there were updates every other week==at least we saw our SE! Finally
there was a version of KSAM clean enough to attempt a load of tne
260,000+ records. It took 5 days for the disk drives to survive the
snhaxe out test; but one of the other systems started acting funny. Soon
we were in the GAMMA test pnase again. After several attempts to fix
tne bug, the SE took our test proaram and disappeared. (He claimed he
wouldn’t come back until there was 8 version of KSAM that would work on
his macnine!l)

The next weexk he laid the update tape on our aesk: we hao become past
masters of doing KSAM updates. The SE’s parting comment was, "That)
day load should pe faster," "Did we get FAST KSAM?" "Can’t say; but
don’t tell anybody else."

The reload took 2=1/2 days. Not the 1000% improvement expected, and
there were more pugs. So, we wrangled a day at the lab to find out why
a particular bug had so many tacets and why it was taking upwards of a
month to fix a problem we felt was critical. A lot of information was
passed in both directions, and the lab thanked us for bpeing a BFTA test
site. wished somepbody had told us sooner!

B-P4.1

Faster with FAST KSAM

Tne new version of KSAM was quoted to be the pre-release version that
would follow the MIT following 1814, That was Feb. 9, 1978. It passed
all our tests and is now on the 1814 M.,I.1.

Following tips from the lab, the 1load took 20 hours. Not bad for
250,000 records. In retrospect we are happy to have picked KSAM,

KEXELLE
An understanding of the KEYFILE will help in knowing why the tollowing
tips work, A close reading of the new Appendix B in the KSAM manual
will be useful,
First, the KEYFILE record size is one sector (128 words; 256 bytes),

Tne COMLRBUL block is described in FIGURE 1. The number of Kkeys per
record is the main item of interest.

CONTROL BLOCK (first bicek in each key file)

Word
0-3 Daia Filz Name identifies data file
associated with
415 Date/Time key file
16:17 Version/Fix
18-19 3 Records in Data File
20-21 #Blocks in Data File
22 = Words in Lzst Data File Block
23 Dzta File Blecking Factor
24 Data File lircord Size
)
25.58 Intrinsic Calls
{each a double word)
b Total file access
59-60 Key Bluck Read Counter counts, used by
61-62 Key block Write Counter VERIFY command
63-64 Kav Block S:i'it Counter J
77 3# Kevs < specifies number of
keys defined for file

128 ?

FIGURE i, CONTHOL 3LUCK layout. Note word 77,

B-p4.2

Faster with FAST KSAM

The KEL_.DESCBIRIQR block has one entry Oof 8 words for each detined
Key. The detailed layout is in FIGURE 2. The most useful items right

now are the pointers to the ROOT KEY ENTRY block for each of the defined
Keys.

KEY DESCRIPTOR BLOULK

bits= 01 34 78 15 word
. .)
pointcy 1o primary g Disc Address of Root Block !
key root block 2
keytype [key size 3
Iocat!on in data record > key slarlin.q locatijon 4 % primary
of primary key D! key blocking factor 5 key
(D=Dupficate key flag) | % of tree levels | 6
reserved 7
8
J
o)
pointer to st alternate > 10
key root block] 1
location in data record > 12 > Alternate
of 1st alternaze key r 13 | Key 1
1 14
15
16)
<;> additional entries for up :
to 15 alternate keys %)
128
FIGUPE 2, KEY USECRIPTOR BLOCK. Each entry con-
sis~s 2f 9 words. The RESERVED area is a
pointer to the free list chain for this
Kev

The KEY ENIRY blocks contain the Key values and pointers used to make

KSAM do its thing. A quick look at FIGURF 3 will show that a key entry
is composed of:

1. Double=word relative record number of the KEY ENTRY
block that sequentially comes before this entry.

2. KEY value as it is in the Data Record. A slack

byte 1is at the end if the key length is odd. This
slack byte IS NOT initialized.

B-04.3

Faster with FAST KSAM
3. Double=word relative record number of the data
record in the data file,

4. Double-word relative record number of the KEY ENTRY
block that sequentially comes after this entry.

A @g
FIGURE 3, KEY ENTRY. sSee text for description of
nurmbered items,

With two or more keys {tem 4 becomes item 1 for the next key in that KEY
ENTRY block, see Figure 4, Thus there is 1 more KEY ENTRY pointer than
the number of active Kkeys in that block. Since each KEY ENTRY has a
data pointer also, the number of double word pointers can be written as

2N + 1
where N is tne number of keys per KEY ENTRY block.

Eacn KEY ENTRY block starts out with a double=-word integer whose value
is the relative record number of that block. The next worad has a count
of the number of active keys in this KEY ENTKY block. Subseguent
records within the same KEY ENTRY block do not have this information.
The key value within a KEY ENTRY block can be split across the physical
blocks of the KEYFILE. Using FCOPY to dump the KEYFILE with ‘s NOKSAM;
OCTAL;CHAR’ options will allow a person to inspect the actual layout for
a particular file. Thus a person could simulate conditions that would
normally be hidden deep inside a large file. OUnce you know the general
layout you will quickly pick up the specific pieces of information
neeaed to navigate through the KEYFILE.

B-94.4

Faster witnh FAST KSAM

I

po—
.

[1]

7

FIGURE 4. KEY ENTRY BLOCK. Words 1 & 2 contain the
r2lative record number for this block.
%ord 3 ‘contains the number of active
kevs, ‘otice how items 4 and 1 are
sharecé bv adjacent KEY ENTRYs.

Li Ly CY

l; K sactive
ﬂwrd}uunber

Wwe nave spent upwards of two days at a time sifting through a KEYFILE in
this manner in order to pin point KSAM bugs. On one occasion a bug
seemed to occur only on our 280,000 record KSAM file. My pboss bet a
milksnake that I couldn’t simulate it with less than 100 records. 1 did
it with 8==-put 1 first knew exactly what was happening.

FIGURE b can be followed to calculate the blocking tactor (BF) tor each
key. A specified BF 1s used as a minimum and is adjusted upwards to
make full use of any remaining area in the last sector. The default BF
§s cnosen so that the KEY ENTRY block will span & sectors==-1024 words
(2048 bytes), 1If the KEY ENTRY block spans more than 16 sectors (204§
words or 4096 bpytes), the BF is reducea so a maximum of 16 sectors is
usea.

Witn multiple keys the largest KEY ENTRY block size is used to calculate
the BF for all keys. Thus all KEY ENTRY blocks occupy the same number
ot sectorse. Tnis along with the 16 sector maximum are by=products of
requirements for using the KSAM extra data segment.

B-04.5

round

key size in bytes

key entry size in words)
blocking factor (number of key entries per block)
key block size

data file limit in records

number of sectors per key block

key file size in sectors

up L= round down

ES= L(KS+1) /2]44 «———2 words/pointer

L

<

BF

<
PF = ¢cvon

fewest # words that contain key entry
speacified?
Y

N
numbery ——————— error

Y

J

J

BS=1024
{defauit}

p

1
BS = N8 x

2

BS = (ES X BF) + 5 e—————— 3 control words + 2-word pointer

|

NB = [BS/1287

t

words in sector

128 «———————— optimum block size

!

———— BF=[(L

(BS-5) /ESJ-1) /2 1x 2 «—ou adjusted BF

M—I_._/

~ # key entries in block

”

~

FL

C\

rounded to nearest even whole #

specified? N

Y FL= 10214 (default)

J

FS=(IFL/BF x2)xNB

double # of blocks foi block splitting

FIGURE 5,

Calculating blocking factor (BF) and file

size (FS) for one key.

B-24.6

Assume a file with 2 keys defined as:

KEY = B,1,53,12

KEY = B,54,13,20
For Key 1: For Key 2:
KS=53 KS=13
FL=1024 (defautt) FL=1024 (defauit)
BF=12 BF=20

Calculation of FS:

ES=L(53+1)/21+4 = 2744 = 31
BS={31x12)+5= 377
NB=I377/12871=12.971= 3 sectors
BS= 3x128 = 254
*BF=I(L(384-5)/21 1-1)/2Ix2
=[(L12.2]-1)/27x2
=[(12-1)/27:.2
=[5571x2= 6x2= 12
FS=(T1024/1271x2) x2
=([85.31x2jx3

= 516 scctors

ES=L(13+1}/24+ 4 =744 = 11

B8S=(11x20) +5 = 225

NB=1225/1281=1.751= 2 sectors

BS= 2x128 = 256

*BF=r(L(256-5)/111-1)/21x2

=M(L22.84-1) /21 x2
=[(22-1)/21x2
=[10.51x2=11x2= 22

FS=(11024/221x2) x2
=([46.51x2) x2

= 188 sectors

Since key 1 has tne fa-gest block size {364 words in 3 sectors)}, its blocking factor is unchanged. The blocking
factor for key 2 is &Zjusted so it has the same block size, The following values sre used:

£S=11 &————— cniry size calculazed for key 2

BS=324 «———— block size of key 1 (now used for key 2, also)

FL=1024 «——— default file size in words

NB=3 «——— number of sectors needed for each block of 384 words

Calculate the new blocking factor for key 2:

‘BF=T(L{384-5/11] -1)/271x2
=l(L34.41-1)/271x2
=[16.5T1x2= 17x2= 34

FS=(1024/341x2) x3
=(130.171 x2) x3 = 186 sectors

Sumnming - s file sizes and adding two sectors for control and key descriptor information, the totat file

$ize in sectors is:

516 + 186 + 2 = 704 sectors

*The algorithm to calculate BF can be expiessed more simply if the result can be checked for an cven

numbcr:

BF=LBS-5/ES J If BF is an odd number, set BF=BF-1

FIGURE 6, Calculating file size (FS) for multiple

Keys.

B-94.7

Faster with FAST KSAM

F1GURE 6 shows how the size of the KEYFILE is calculated. Since eacn
block can be a minimun of half full, twice as many KEY ENTRY blocks are
assigned as would be needed if each block were full.

KSAM
Extra Data Seginent

STATISTICS
CONTROL BLOCK
&

KEY DESCRIPTOR e
BLOCK } A (approx. 1%K bytes)

Data used
by VERIFY

L 4

Current dota rf:-cord, Working Storage
& key comparison area J

Data Block B

8 biock ———u—»
Current dats bj Buffer

(maximum 4K words)

Key Block
Buffer

1 key block per bufter

/\

Key Block
Buffer

? C #of key block butfers

x key block buffer size

(maximum size per biock
up 10 20 =4K bytes)

Key Block
Buffers

Total Extra Data Scgment size = A + B + C (maximum 32K bytes)

F1GURE 7, KSaM XpS.

B-94.8

Faster with FAST KSAM

KEX_BUEEERS

The new features of FAST KSAM can now be put to use. An extra data
segment (XDS) is used to handle all I/0 to the KSAM file. The size of
this XDS is limited to 16K words., Approxiametly 1=1/2k are used for
overhead and control information. Oonly one buffer is used for the
DATAFILE; it has a maximum of 4K words ano is the size of one block from
the DATAFILE. We use a program that calculates the best BF that will
fit in 8 or fewer sectors so the data puffer will be 1K or less, The
rest of the XDS can be used for KEY ENTRY bufferse.

To £ind how many puffers could be used (all calculations in words):
1. Subtract the 1-1/2K of overhead.

2. Subtract the size of the data buffer. Lets assume
1K.

3. Divide what’s left by the size of a KEY ENTRY
block==default is 1K.

4, Round the answer down to the next integer.
So, (16K = 1=1/2K = 1K) / 1K = 13 buffers.
To get them:
:FILE ksamfile;DEV=,,13

It this would cause the XDS to be larger than 16K words, KSAM will auto-
matically decrease the number of bufferse.

Since KSAM does have a falrly good algorithm for choosing the default
numper of key buffers (see FIGURE 8), once the file has stablized you
may wisn to restrict the use of the FI1LE equation to loading or other-
wise making large numbers of changes to the file. If the tile is empty,
KSAM will default to the minimal number of buffers for the type of open
specified. For this reason you should specify the number of buffers you
will actually need as KSAM will not allocate more buffers as the file is

Each process that opens the KSAM file gets its own XDS. The numbter of
bufters in these XDSs are dependent upon the type of open specified and
tne number of keys in the file at the time of opening. Theretore, these
XDSs could nave diftering numbers of key buffers.

R-04.9

Faster with FAST KSAM

Access Type Buffers Assignes
Read Only Access 1 buffer per level in primary key structure
Write Only Acciss 3 buffers per primary key + 3 buffers per alternate key + 3 buffers
Other Acgess 1 buffer per level in + 1 buffer per level + 3 buffers
(Read/Write or rimary key structure in alternate k tr
Update) o] y key zey structure

(up to a rnaximum of 20 Euffers)

FIGURE i, Default key buffers allocated at FOPEHN.

DUPLICATES

Tne other 1SAM packages that 1 am familiar with do not allow for dupli-
cate keys. At first glance, one would think it is a blessing that KSAM
does; but to paraphrase the LAB: 1f there are more than 10 duplicates
for a particular key, then don‘t have this key or make it unique.

wnenever a Key is added to the file it is added after any duplicates
tnat exist for that value. KSAM must search the KEYFILE to find that
last entry. A START causes a search for the first entry.
Two ot the most common ways of making duplicates unique are:
1. Put a time stamp (HR:MM:SS) after each key. For
calls less than 1 sec. apart, this would still
leave tnem duplicates.
2. Put a copy ot the primary key after the other keys.
In COBUL the primary key must be unique. 1In the ¥edical Index case |t
was 7 bytes long so we were not any worse off than using the time stamp.
Another method will be proposed in the EMHANCEMENI section.

IIMINGS

B-04.10

A stand=alone environment is not readily available on our
CPU seconds and WALL TIME to load 10,000

following

Faster with FAST KSAM

timings show

nbotn

records into an emoty KSAM file.

By correctly specifyinag the numper of key buffers and

keys there will be a marked improvement {in throughput,

system, The

Default Buffers 13 Buffers

KSAM expected duplicate
keys and duplicate keys 1111/5333 533/1010
were loaded.

KSAM expected duplicate

keys; but all keys loaded 870/4627 326/484
were unique.

KSAM expected unique

keys and unique keys 1183/5992 389/567
were loaded.

FIGURE 9.

This shows the CPU seconds/WALL seconds
to load 10,000 records into an empty KSAM
file. Three keys were used--7 bytes, 20
Eytes, and 43 bytes. The BASIC procedures
were used to load the file.

OMLINE_BENEFITS

benefits even outweigh this.

An example please:

in it,

4, Therefore,

two users willl access a KSAM file that has 4
we will assume 1 defined key and a KEY ENTRY blocking factor of
the ROUT KEY ENTRY block is full.

to the file will cause a key=block-split. We proceed:

1.

2.

User A LOCKs the
logical records.

Both users open the file for shared access.

f{le and reads the first ¢two

B-P4.11

utilizing
But the other

Any new records

unique

records

added

Faster witn FAST RSAF

3. User A UNLJCKs the fille and User B LOCks 1it.

q, user R Writes 3 record whose logical value places
it 23,

d. cser B JInLUCKs the flle ana posts the Lpcatea
cutfers,

o, Tne tile now has 1 KFY ENTKY in the RUOT block.,
lhis points to two other blocks. [he first vlock
contains the keys User A just read. The second
vplock contains the two keys User A expects to see.
In actual practice he should get the record that
User B just posted.

7. User A LOCKs the file again and calls for the next
READ (seguential of course).

8. The next KEY ENTRY that User A would previously
have used would have been #3 in the ROUT. At least
that is all that KSAM knows. But the KOOT now has
only one entry. Since the 3rd entry no longer
exists we are at the end of the file, so return an
£EOF condition.

User A was lucky. 1f there had been many KEY ENTRY blocks and User A
had been down several 1levels, the following possibilities could have
happened (we have seen results to indicate they have happened to us):

1. The current block would no longer be included in
the Key structure; but the process is not aware
that is has been placed in a free buffer 1list, so
the process uses it,

¢. The same for a previous level; ie, the ROUT or one
of the {ntermediate 1levels was moved away from
where we expected it after the last access.

3. The current or a higher level was reshuffled. All
blocks are active; but not necessarily in the same
tree structure as before.

we turned this in as a bug--and promptly got laughed at. This is one of
those dubious features we all enjoy. KSAM will not keep track of any
reorganization that may occur while the file is unlocked. The buffers
are refreshed by the physical blocks that were last used in the XDS.
KSAM will__not check to be sure that these contain the logical values
last used. So, you must reposition the pointer yourself. You can do
tnat by using the START procedure with a relop of strictly greater than
tne key tnat was returned in the last read even though a number of
cnanges may have occurred to the point of deleting the record last read.
Trils 1s a multi-user online environment, right! Again:

B-p4.12

Faster with FAST KSAM

1. LOCK the file,

2. Do a START using last key read and greater than
relation.

3. Now do that sequential READ,

4. If you were going to do a READBYKEY or a REWRITE in
random/dynamic mode, then (items 2 & 3 are not
needed.

5. UNLOCK when done.

That process can’t be done with duplicate keys. If the last KEAD was in
the middle of a duplicate key, the START would bypass the duplicates not
read. Unique keys are a MUST in order to do the above.

In the case of updates to the tile, one more §{tem s needed==RECORD
LOCKING. Set aside one byte in the record to be a locked/unlocked flag.
When a record is read prior to updating {t:

1., Check that field--if it is locked, then report |{t
as being lockea or work out a mechanism to hang
until it frees up. We don’t like hanging up, since
a process might abort and leave a record flagged as
locked. It hasn’t happened iIn 6 months at our
site, but? 1If unlocked, then continue,

2, Set the flag for locCk.
3. REWRITE the record.

Now you can UNLOCK the file and KNOwW that when you’re ready to update
tnat record it WILL BE the SAME. P.S. Be sure to reset that flag!

BROPQSEL_ENHANCEMENTS

If we tind time between this writing and the International meeting, we
may have a set of COBOL copylibs to simulate this. #We want KSAM to do a
lot of the dirty work for us, so:

1, 1t should automatically call the LOCK for us if we
failed to. Of course, only we knhow when to UNLOCK,
so this 1Is only a onesided benefjt. It woula still
be useful.

2. The tirst call following a LOCK (whether directly
or by #1) should cause a call to the STAKT to
reposition the pointer, unless this is a READBYKEY
or START or REwRITE in random/aynamic mode.

B-P4.13

Faster with FAST KSAM

3. Force all keys to pe unique by:

A, Assigninc a gouble=~word integer as the Frimary
key.,

b. Appending this integer (4 bytes) to the ena of
every key. (Uf course, if one key ends at the
place the primary key takes off, then Just
increase the lepgth of that Key.)

4. Allow record locking (if necessary, set asice one
byte) ie, a read with lock option.

1t everything else in KSA™ worked tne same, we coulo then detine a next
step that would reuse srace left by deleted recoras.

1. The record with & Primary key of zero should holo
two pointers:
A. The next integer tc be used for the primary key
(ie, EOF pointer).
B. The primary key value of the most recent record
deleted.

2. The alternate keys for primary key ot zero and all
deleted records should be set to HIGH=VALUES except
for tne last 4 bytes which would be a copy of the
primary key.

3. An EOF pointer would be returnea upon reaoing a
record with HIGH=VALUES in all bytes except tne
last 4 ot any key,

4. Every deleted record would have the primary Kkey
value of the previously deleted record. (A push
doan stack or free list chain.)

S. whenever a REWFITTE occurs it woula bpe keyea otf ot
the primary key,

p. A #RITE would first use up tne tree list chain
r.erore increrenting the primary key.

You will notice the anove has been specitied in such o pgnner that -
user ot tne current KSAM could write a set ot LTOCENuUTes to mare KoA:
function as suggested. Now for the bombsrell. F>SAM glresay dtpenos o
douole-word inteaer to ALL keys. It is rore prorerly called the aata
recora pointer.

If the lab would co the above, they couls 20 1t at a more simple level
(ie, they wouldn’t need to use the Timary xey)d.

1. They could use tne £IF pointer as how«,

B-94.14

Faster with FAS1T KSAM

2. They would neea to set up a free 1list chain for the
DATAFILE (they already have one for the KEYFILE).

3. They would have to keep track of the key and record
number of the last logical record read. Then auto-
matically reposition according to the first set of
proposed enhancements.

4. They already aprpend the record pointer to the Kkeys
so no physical change would be necessary==as would
be i1f one of us users was to try.

5. 1In short, the lab nas all the information necessary
to do the job except for tne free chain list in the
DATAFILE.

Whether or not the lab does this enhancement, we already do something
similar by using the primary key to append to all others; but we intend
to write the procedures necessary to make KSAM look like our proposal.
Anypody interested?

Tnere are some enhancements that only the lab can do:

1. A central XDS similar to the recent IMAGE update.
Only one XDS per tile no matter how many users are
using that same file. A small XDS may be needed
for each process to keep track of the last logical
key value and other local data.

2. Implement 2 LOCKing similar to IMAGES.

3. UK, let’s go for it! USE 1THt IMAGE CALLS 70 HANDLE

KSAM. This means:

A. A schema processor to look for data sets type k
or KSAM,

B, Wwe could have FAST sorted chains.

C. In fact we coula now have sorted Master files
(just a KEYFILE to point to the Master set
entries).

De DBFIND would also tunction as START for KkSAM
tiles,

E. DBGET would take over as:
= the current calculated DBGET would work for

READBYKEY.
= a new mode for sequential reaus as opposed
to serial.

F. Tnhe DBLOCK would give the same type of locking
scheme for KSAM 4as is now being enhanced for
IMAGE.

B-94.15

Faster with FAST KSAM

These ideas will be implemented in our shop as far as possible. we plan
to write a set of routines that will handle both the KSAM and IMAGE

proceaures. If the lab neats us, we shall be very happy to conceed the
race!

B-p4.16

	Papers / Presentations
	Faster with Fast KSAM

