
IMAGE's COMING OF AGE: Breaking free from restrictions to

Data-Base transformations.

F. ALFREDO REGO

Chairman, Software Department
Instituto de Informatica y Ciencias de Computacion
Universidad Francisco Marroquin
6a. Avenida 0-28, zona 10
Guatemala, GUATEMALA.

ABSTRACT

A computerized data base should reflect an organization's
way of behaving. As real-world circumstancies change, forcing
the organization to adopt new ways and abandon old ones, the
data base should also adapt itself.

Hewlett-Packard provides tools, such as DBUNLOAD and
DBLOAD, which allow a limited set of transformations to
IMAGE/3000 data bases. But these tools do not lend themselves
to the easy implementation of the radical transformations that
are sometimes necessary. The restrictions of these tools, we
feel, are analogous to the do's and don'ts imposed on children
by loving parents.

Taking into consideration that children (just like computer
users) eventually come of age and will do their own thing
despite formidable restrictions, we have developed a software
system called "DATABASE.UTILITylf to help IMAGE/3000 users out of
their data-base transformation predicaments.

"DATABASE. UTILITY" is an MPE 'group.account' that contains
a set of software modules designed specifically to allow a large
selection of transformations to IMAGE/3000 data bases without
having to mess around with magnetic tapes or schema recompilations.
And, in good parental fashion, this system also keeps a watchful
eye for any possible difficulties that might potentially upset
the health, consistency "and integrity of the Ifadolescent" data
base.



Concurrent data-base operation and evolution, data-base
adaptability, data-base consistency, data-base conversion,
data-base design, data-base integrity, data-base redesign,
data-base restructuring, data-base management systems, DBMS's,
data-base transformation, Hewlett-Packard's lMAGE/3000 Data-Base
Management System, root file transformation, schema changes.

How can I be ABSOLUTELY sure that my data-base design is perfect?
How can I GUARANTEE that I will NEVER have to change it to meet
unexpected shifts in my organization's way of doing things?

If I can not answer these questions to my satisfaction, then
what type of tuning (and fine-tuning) tools do I need to
facilitate the constant and inevitable evolution of my data base?

What type of questions worry me about the tools I have
currently available to me? And what type of questions linger in
my mind as I dream of better and more effective ways to do what
I have to do anyway?

Why do I have to COMPLETELY STOP the operation of my live data
base, even when I only want to make very slight changes like
password reassignments? Could I maintain concurrent data-base
access while I do certain non-radical transformations or while
I radically transform data sets that are not being currently
accessed? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to spend (a sometimes very long) time to DBUNLOAD
my WHOLE data base to magnetic tape before I transform my
schema (assuming, of course, that I do not want to lose the
live data I presently have!)? Could I skip the whole DBUNLOAD
trip? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to spend (a sometimes even longer) time to
DBLOAD my previous data base, even though I merely want to
optimize the storage locations of a primary path's entries?
Could I simply reshuffle these entries without having to think
and worry about the consequences of having to reshuffle the
whole data base as well? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to PURGE my entire data base, when all I want is
to change the name of a data item? Could I simply make changes
such as this without having to kill (and then re-issue life to)
my data base? ("DATABASE.UTILITY" ANSWERS: yes.)

B-03.2



- Why do I have to EDIT and recompile my schema, when I simply
want to change the read/write capabilities of a user class?
Could I dinamically do this while the data base continues to
earn its living? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to CREATE, from the newly produced root file,
a brand-new data base, if the old one was just fine except
for the capacity of a data set? Could I change the capacity
of a data set without having to go through this process once
more? ("DATABASE.UTILITY" ANSWERS: yes.)

Why am I at the mercy of subtle schema changes that CAN cause
very unpleasant surprises, even after my previous data base
has apparently been successfully DBLOADed to my new data base?
Could I have some 'editor' which would make sure I do not
clobber my schema? Could I know, before I ruin anything, that
my data-base transformation request is illegal? Could I have
a dialogue with the system to "discuss" the possible consequen
ces of subtle changes in transformation requests? ("DATABASE.
UTILITY" ANSWERS: yes.)

Why do I have to write special application programs whenever I
need to transform my data base in ways that are not supported
by IMAGE/3000's transformation utilities? Could I have a
flexible, non-procedural system that would even assemble data
entries from bits and pieces taken from other data entries
from the same data base, or from other data bases, or even from
good old MPE files? Could I do data-type conversions (from
integer to byte, from integer to double-integer, from byte to
real, from integer to logical, from floating-point to byte with
decimal-point suppression and decimal-place right-justification,
etc ••• ) if the source data type does not match the destination
data type? ("DATABASE. UTILITY" ANSWERS: yes.)

"DATABASE. UTILITY" is an MPE 'group.account' with privileged
capabilities assigned to it by the computer installation's system
manager.

All our design trade-offs have one main objective: to
preserve data-base consistency and integrity. We strongly feel
the same way about preserving other user's domains and, of course,
about preserving the operating system itself! Therefore, all
privileged instructions in "DATABASE. UTILITY" are executed in
bracketed fashion (that is to say, the programs execute in user,
non-privileged mode 99% of the time; whenever it is imperative
that privileged instructions be executed, a dynamic call to the

8-03.3



GETPRIVMODE system intrinsic is made immediately BEFORE the
privileged instruction; then, a dynamic call to the GETUSERMODE
system intrinsic is made immediately AFTER the privileged
instruction.)

A good 90% of all module axecution times is spent in making
reasonably sure that the requested transformations are legal and
will not produce unpleasant results. Complete log-on subsystems,
analogous to MPE's, check to see that only authorized users
access the programs. An IMAGE/3000 data base (of course!) is
kept for all programs, users and transformations as applied to the
various data bases in an installation.

At the least sigh of trouble, the target data base or data
set is purged and the old one can be salvaged.

When necessary, the root file is appropriately "updated";
MPE files are created or purged as needed; data sets are re
organized to include or exclude structural information; data sets
and data items are re-numbered if any intermediate elements have
been eliminated, etc.

The Data Base Administrator (DBA) can easily obtain an
up-to-date picture of the transformed data base by means of
QUERY's "FORM" command and our own "PASSES" program. "FORM" lists
data sets, data items and paths as defined within the data base's
structure. "PASSES" lists passwords and user read/write classes.

1) NON-TRANSFORMATIONAL

ASSEMBLE: Assembles data entries ("records") for master or
detail data sets from one or more data sets or MPE

files. The source data sets may be mixed from several data
bases and may be either details or masters. The source MPE
files may be accessed sequentially or directly by key.

The program asks all relevant questions, such as data-item
types (integer, byte, logical, etc.), beginning byte or word
in the source entry/record, etc. If it detects inconsistencies
(for instance, if the source data-item type is byte and the
target data-item type is double-integer), it explains them and
requests instructions to perform one of several possible
actions, depending on the particular circumstances: ignore and
re-try? do data conversion? ••.

B-9J3.4



2) GLOBAL DATA-BASE TRANSFORMATIONS

COPY: Copies a data base from a source 'group.account'
to a destination 'group.account'. The data-base

creator MUST RELEASE the data base beforehand.

RELEASE: Releases the root file and all MPE privileged files
assigned to a data base, so it may be copied from

another 'group.account' (or accessed through QUERY or other
application programs when running from other 'group.account')

SECURE:

RENAME:

Reverses the effect of "RELEASE", securing the data
base from access through other "group.account'.

Assigns a new name to a data base. Changes MPE
file names as well as internally-kept IMAGE names.

PASSES: Reports, lists, modifies, assigns, re-assigns, takes
away, etc., maintenance passwords and read/write

passwords and class numbers.

PURGE: Purges the root file and all MPE files assigned to
a data base. Loops around asking for other data

bases to be purged, instead of ending after having purged a
data base as "DBUTIL, PURGE" currently does.

AUDIT: Produces a report of the usage of "DATABASE. UTILITY"
programs by user, program, data base, etc.

3) TRANSFORMATIONS OF DETAIL DATA SETS

NEWDTAIL: Adds new detail data sets to the data base (with the
appropriate new data items, if needed.)

CAPDTAIL: Modifies the capacity of a detail data set, preserving
all current chains and making sure, in the case of a

decrease in capacity, that the target capacity is at lease equal
to the lowest permissible capacity for the given set's status.

B-03.5



KILLDET: Deletes a detail data set, making sure that it is
safe to do so. It optionally dumps the entire set

to an MPE file in the format specified by the user (or dumps
only those data entries within the data set that meet the
boolean specifications given by the user.)

4) TRANSFORMATIONS OF MASTER DATA SETS

NE~TR: Adds new automatic or manual master data sets to the
data base (with the appropriate new data items, if

needed.)

CAPMASTR: Modifies the capacity of a master data set,
preserving hashing properties for calculated access

and chain-head structural information. Reduces synonYm
occurrences by suggesting program-calculated prime-number
capacities in the neighborhood of the user-specified capacity.

KILLMAST: Deletes a master data set, making sure that it is
safe to do so and that no chains will be left hanging

without chain heads. It optionally dumps the entire set to an
MPE file in the format specified by the user (or dumps only
those data entries within the data set that meet the boolean
specifications given by the user.)

5) TRANSFORMATIONS OF DATA ITEMS

NEWITEM: Adds new items to existing data sets.

KILLITEM: Deletes a data item from an existing data set. If
all data-set references to a given data item have

been deleted, the item is also deleted from the root's item
table.

RDEFITEM: Re-defines the type of a data item (from integer to
byte, for instance), and does all the appropriate

data conversions if necessary. If the new data type has a dif
ferent word-length count, all data sets that reference the
given item are re-organized to reflect the new structure.

8-03.6



6) TRANSFORMATIONS OF ELEMENT REFERENCES

NEWNAME: Assigns a new name to a data item or a data set.

Checks non-duplicity and legality of new name.

7) TRANSFORMATIONS OF ACCESS PATHS

NEWPATH: Defines a new path connecting an existing master
data set to an existing detail data set by means

of an existing data item (i.e., it upgrades non-key data items
to the status of key data items or SEARCH ITEMS.)

CLOSPATH: Deletes a path between a master data set and a detail
data set. (i.e., it downgrades key data-items or

SEARCH ITEMS to the status of non-key data items.)

SORT:

UNSORT:

Upgrades non-sort data items to the status of sort
data items for a given path.

Downgrades sort data items for a given path to the
status of non-sort data items.

PRIMARY: The path most frequently accessed in chained mode
should be specified by the Data Base Administrator as

the primary path for a detail data set. Should this state of
affairs change, the DBA can specify that another path become
the primary path for the detail data set by means of this program.

PAVEPATH: Reshuffles the entries of a detail data set so that
the entries of each chain within the primary path will be in
contiguous storage locations (for efficiency's sake in chained
retrieval.)

8-03.7



CONCLUSIONS

A) PARTICULAR:

"DATABASE.UTILITY" worries and keeps track of all IMAGE/3000
internal housekeeping, while the data base evolves.

The user is, then, free to concentrate his/her energies on the
ONLY housekeeping task that really matters to him/her: THE
DATA BASE'S ACCURATE REFLECTION OF THE ORGANIZATION'S WAY OF
DOING BUSINESS.

The user can, now, specify WHAT he wants to have in his data
base, knowing that tomorrow he can easily re-specify his
requirements without having to fear lack of compatibility. HOW
this is accomplished is the responsibility of "DATABASE.UTILITY".

B) GENERAL:

Our research and development team has concentrated its efforts
on helping users of Data Base Management Systems realize the
tremendous potential of this emerging computer technology.

In this report we mention only some of the projects that keep
us busy and happy in the Land of Eternal Spring, Guatemala.
Currently, we have software systems in various stages of
development. The wide range of status is illustrated by the
fact that some have been successfully installed at customer
sites after alpha, beta and gamma tests and some others have
just been dreamed up (such as our data dictionary project.)

To widen the scope of our activities, we would appreciate
hearing from those researchers, developers, users and friends
of Data-Base Management technology who share our enthusiasm.
We will carefully examine and consider all suggestions and
criticisms as well as any proposals for cooperation.

---------------ACKNOWLEDGMENTS

We wish to express our appreciation to all our associates and
friends who, directly or indirectly, made our software projects
possible. In particular, we are indebted to: Jon Bale, Gabriel
Buzzetti, Enrique Castillo, Alex Dengo, Pablo Gutierrez, Lissa
Hanckel, Max Holzheu, Jerry Johnson, Einar Klanderud, Orly Larson,
Jose Miron, Felix Montes, Manuel Ponciano, Clara Maria Ramirez,
Patricia Springmuhl de Rego, Simon Sibony, Sergio Tenenbaum,
John R. Trudeau, Fred White, Rene Woe.

R-03.8


	Papers / Presentations
	IMAGE's Coming of Age: Breaking free from restrictions to Data-Base transformations


