
CWF/3000: A COMPLETE SYSTEM FOR COMPUTER

ASSISTED INSTRUCTION AND TRAINING

HAROLD J. PETERS

EDUCATIONAL SOFTWARE PRODUCTS

9 GEORGETOWN CIRCLE

IOWA CITY, IOWA

What is CW?

CW stands for "coursewriter", which is an authoring language

for computer-assisted instruction (CAl). Figure 1 shows a sample

of student interaction with a CAl lesson that was written with CW.

While the subject matter can of course vary greatly, this example

is typical of the sort of tutorial dialogue that can readily be

written with the CW language.

Figure 2 shows the CW code corresponding to the sample student

interaction in Figure 1. The two letter "op-codes" are almost self

explanatory; QU: question, CA: correct answer, TY: type, WA: wrong

answer, UN: reply for unexpected answer. This example illustrates

the principal advantage that CW, or any other CAl authoring language,

offers over a general purpose programming language -- that is: implicit

branching. If the student's answer does not match the argument of the

CA, then processing automatically branches around the TV associated

with the CA and on to the next implied comparison, the first WA.

A-12.1

FIGURE 1

Most nouns ending in "ch" form plurals

by adding "es ".

For example,

"church" becomes "churches",

"1 unch" becomes "1 unches"', etc.

What ;s the plural of "torch"?

torchs

"torch" ends in "ch". Please try again.

terches

I think you've spelled "torch ll wrong.

torches

Good! Try another.

Figure 1. A sample of student interaction with a CAl course

written in CWo

A-12.2

FIGURE 2

No, "torch ends in "ch". Try again.

t&ches

I think you've spelled "torch" wrong.

Please try again.

No. The answer is "torches". The ending lies"

is added for the plural because "torch" ends

in "ch". Try another one.

PRBR

UN

CA

TV

WA

TV

WA(L)

TV

QU Most nouns ending in "ch" form plurals

by adding "es ".

For example,

"church" becomes "churches",

"l unchll becomes "l unches", etc.

What is the plural of "torch"?

torches

Good! Try another.

torchs

Figure 2. CW code for the sample student interaction given in

Figure 1.

A-12.3

Again, if there is no match a branch is made automatically to the

next implied comparison, etc. If on the other hand, the student's

answer does match the argument at one of the implied comparisons,

then the corresponding TY (and/or other so-called "minor" op-codes)

is executed and all further comparisons are skipped over in an

automatic branch to the next question.

All this implicit branching does save a lot of busy work on the

part of the author and lets him concentrate on the higher-level

structure of the lesson. It clearly does not absolve the author

of all programming tasks but it does make his job a lot less tedious.

First appearing in the early 1960's, CW has to be considered

one of the authentic pioneering languages for CAl. Many CAl

languages have come along since the introduction of the first version

of CWo And this leads to legitimate speculation as to why this "old"

language still manages to survive. Two reasons appear most prominent.

First, CW is extensible: the short-comings in its original design

can be circumvented by the use of its user-written function feature.

Any programming function within the capabilities of the underlying

software system can in principle be invoked by a CW course through

use of the user-written function feature. Within a CW course, the

function call is simply

FN MYPROG

where MYPROG is the name of the user-written function to be invoked.

More will be said regarding user-written functions in a later section.

A-12.4

The second factor contributing to the longevity of CW is that because

of its early existence on the most popular equipment, i.e., IBM,

a great deal of courseware has been created in CW over the years,

and the easiest way for newcomers to CAl to get off to a running

start has been to tap into that large reservoir of courseware by

getting a CW system themselves. They then in turn create more

courseware and so the bandwagon goes on. It was precisely this

second attractive feature of CW -- the large accumulated base of

courseware -- that originally drew the interest. of Hewlett Packard

and leads to the next question:

What is CWF?

CWF stands for Course Writing Facility, Hewlett Packard's name

for its emulation in BASIC of IBM's CWIII (the version of CW current

in the early 1970's). CWF was originally developed for the HP2000

timesharing system, and some 15-20 CWF systems were sold prior to

HP's withdrawing it from the market, at least partly in anticipation

of the obsolescence of the HP2000 itself. Essentially all features

of CWF in its HP2000 implementation have been retained in the

HP3000 version, so the description of those features is deferred

to the next section.

What is CWF/3000?

Building upon its HP2000 predecessor, CWF/3000 provides on the

HP3000 essentially all the course authoring, course presentation,

and student-keeping capabilities of IBM's Coursewriter III, version

3 (CWIII), plus a significant additional feature not offered by

CWIII. In CWIII, the extensibility described earlier ;s achieved

A-12.5

through user-written functions programmed in IBM that such functions

can be written directly in BASIC.

CWF/3000 consists of four major subsystems: course authoring,

course translation, student usage, and record keeping/reporting,

each described in turn below.

Course Authoring

CWF/3000 authors use a set of programs headed by CWEDIT to enter,

revise and edit new course material, using the ~W language op-codes

such as shown earlier in Figure 2. Some thirty op-codes, many of

which may· be modified in several ways, offer wide flexibility to

the author. For example, the CA op-code in simplest fonm accepts

exactly one correct answer:

CA torches

~Jith an "L" modifier, a variety of answers can be accepted through

usage of lldon1t care" characters. For example,

CA(L) t&ches

will accept "torches", "touches" or IItxyzches ll or any other

"wordll beginning with .. ·ll t ll and ending' with II ches",· as correct.

Another modifier,IIW", allows more specific alternative correct

answers. For example,

CA(W) torches lamps candles

accepts these three and only these three as alternative correct

answers. And if all this flexibility is not enough, the author can

resort to a user written function, e.g.,

FN ANSWER

and rely on his own BASIC program, ANSWER, to achieve ~ type

A-l2.6

of answer processing he may desire that can be implemented within

the broad generality of BASIC. The experienced CWF/3000 author

moves flexibly between CW and BASIC, taking advantage of the

best features of each as the occasion demands. Very roughly, CW

is superior in dialog-intensive work such as in tutorials, and

BASIC is superior in computation-intensive tasks such as simulations.

Course Translation

In principle, any CWIII course developed on IBM equipment can be

converted via CWF/3000 conversion programs to CWF/3000 compatible

form and then used, revised and edited just like any other CWF/3000

course. In practice, virtually every conversion we have seen

attempted has succeeded -- eventually. The biggest problem -- when

there have been problems -- arises with courses that make extensive

use of special display characteristics. The special display

features available on the system on which the course was originally

offered may not be available on the target system. And even if they

are, they are likely to be implemented differently so that con

siderable conversion attention may be necessary. But whatever effort

may be required, it is almost invariably true that starting with

someone else's courseware and modifying it in whatever ways necessary

to meet onels own needs remains a far superior method for getting

usable courseware up and running than by starting from scratch on

one's own. So it remains the case that the principal source of

attraction in CWF/3000, as in its predecessors, is the ability it

gives the user to most easily tap into a large existing base of CW

A-12.7

courseware. The 1978 Index to Computer-Based Learning1 lists 311

instructional modules developed in CWIII that in principle should

be readily convertible to CWF/3000. In addition, the Index lists

720 modules written ~n BASIC, which are compatible with CWF/3000

in important ways, as described in a later section.

Student Usage

CWF/3000 incorporates HP's Instructional Management Facility,

1MF, to handle student sign-on, sign-off and some of the student

record keeping. Hence a student taking a CWF/3000 course enters

through the IMF program START in the following standard fashion:

RUN START.PUB

What is your 10 number and first name? 1000,Jimmy

Is your last name Carter? Yes

Course name? ENG4

30 September 1978 14:49 Port 7

Welcome, Jimmy to session number 3 of English 4.

In our last session

Whenever the student signs off by typing //STOP or //SIGN OFF, or

is signed off automatically by the instructional program, the

CWF/3000 system saves his restart information so that he may

begin his next session where he left off in the last one, or

wherever else the author may wish to designate.

Record-Keeping/Reporting

In addition to student restart information, as already described,

A-12.8

many other types of information relating to student usage of a

CW course can be recorded and later reported. Information con

cerning essentially any aspect of student interaction with the

course material can be saved by one means or another.

Perhaps most common is simply keeping track of correct answers

in a session, reporting this to the student at sign-6ff time, and

possibly recording the number for reporting to the instructor later,

or maintaining a cumulative day-to-day record of scores for benefit

of both the instructor and student. Another common type of information

saved is the number of times each registered student has accessed a

course and how much cumulative time the student has spent on the

course.

During the development phase of a course it is especially im

portant to accumulate all unanticipated student answers, i~e., all

answers for which no tailored replies had been prepared and for

which only the "reply to unanticipated answer" (the argument of

the UN op-code) is displayed to the student. Frequently, these

unanticipated student answers will suggest that parts of the course

need further development work, including perhaps new explanatory

passages, or at least a broader array of model answers and

corresponding tailored replies. Most of the record keeping and

reporting functions that have been mentioned require that students

be registered for courses, and that the courses themselves first

be entered into the IMF record keeping system. Some examples of

instructor or proctor interaction with the IMF programs are shown

in Figure 3.

A-12.9

FIGURE 3

A. Entering a course

RUN ADMIN.PUB

CODE?MMMMMM

COMMAND?COURSE

COURSE COMMAND?ENTER

COURSE NAME?REX

CODE WORD?Rl

DOES IT HAVE A DEMO MODE?YES

SPECIAL COURSE TYPE?CW

REX IS NOW ENTERED AS A·COURSE.

COURSE NAME?//STOP

DONE

B. Enrolling a student

RUN PUPIL.PUB

CODE?MMMMMM

COMMAND?ENTER

FIRST NAME?JOE

LAST NAME?SWARTZ

ENTERED WITH ID NUMBER 1018.

COURSE NAME?REX

GROUP NAME?MS NOEL

HISTORY FILE OF REX INITIALIZED TO 9 STUDENTS.

AREA NUMBER?1

USER GROUP NUMBER?1

ENROLLMENT COMPLETED.

FIRST NAME?//STOP

DONE

Figure 3. Some examples of instructor or proctor interaction with

IMF record keeping programs under CWF/3000.
A-12.10

As a final note regarding recording keeping, we should point out

that the CWF/3000 record keeping facilities are available for BASIC

language courses as well as CW courses. It is typically the case

-that computer-based instructional materials written in BASIC have

not used ~ kind of student record keeping functions. Typically

instructors have no information as to which students have used the

modules nor as to how well they have performed. It is certainly

difficult to assess the instructional value of CAl materials in

this case. And refinement of the modules, or development of new

materials must be based on guesswork rather than hard data. Once

again, the record keeping and report facilities of CWF/3000 provide

a ready solution to these problems for both BASIC and CW courses.

Some Technical Considerations

CWF/3000 has not been optimized for the HP3000. As of September,

1978, only the student driver programs have been compiled so that

they can run as object code rather than under the BASIC interpreter.

This provides good performance for up to 15-20 students running

most CW materials.

Some technical problems have delayed compilation of the

authoring programs, which means that some authoring functions

execute much more slowly than desired.

Beyond simple compilation of the various programs com

prising CWF/3000, it is clear that substantial further optimi

zation could be achieved through redesign of the file structures,

which still suffer from design constraints imposed by the early

A-12.ll

HP2000 series time sharing systems. These and other refinements

to CWF/3000 await the indication of further interest in the

system by HP3000 users.

Availability

CWF/3000 has been developed by and is available from (under a

license agreement) Educational Software Products. Requests for

further information should be directed to the author, at that

organization.

A-12.l2

	Papers / Presentations
	Computer Applications
	CWF/3000: A Complete System for Computer Assisted Instruction and Training

