momreth Van e
L]
Before [start. I would just 1ike to ask a question of you out there. How
many of you have used APL? How many have used BASICY Now, the toughy. How many
have used APL on the 30007 No one? That is hecauze wp until last week it was not

available on the 2000, We announced APL on the 3000 last week and it will be

availahle in Kovemhowr.

Since 1 assumed that most of you were not users of APL, 1 thought [would start
put with scme very basic questions. The first question that popped to my mind as a
guestion that someone might ask is Khat is APLT APL is an acranym and it stands for
A Programming Language. They really went to a 1ot of work to ficure that ane out.
This language was developed at IBM and has been available from IEM for the last
few years. It was developed avound 1967, 68, and i1 was not actually supported
by 1BM untit a few years ago. APL is an interactive lTanquage. It differs from
languages such as FORTRAN and COBOL 1m that you den't have to specifically request
that the system compile your programs. Maost versions of APL are interpreters. Bui
the pew version of APL available as APIM3000 15 actually an interpretive compiler.
It compiles code as it needs to and keeps the compiled code available im the wWork-

space. [will get into that Tlater.

Another question that popped to my mind is Who can use APL? Most peaple can
use BPL. It is a4 very easy languzge to learn and to start programmimng in APL is
quite simple. We have soma people warking..... I should have prefaced my remarks
by zaying I'm from Hewlett-Packard Research Laboratories in Palo Alto where the APL
program was generated. I dg not work directly for the General Systews Division,

but the product we developed in the Tabs will be available on the HP-3000 system

71

and will be supported by General Systems. We have ome fellow who iz about

12 or 13 working with us at HP. He comes in every day and he sits dowm at the
terminal and writes APL programs. He picked up APL by sitting at a terminal and
playing with it. You can start at a very elementary leve] because of the fater-
active nature of APL. You can simply type ? + 2 and you get back An answer. You
don't have to first define the fact that what vou ape dealing with is integers and
that you want an array that contains two integers and 211 sorts of things 1ike this.

You don't have to get fnto that Tevel of detail im order Lo do useful programming

in APL.
,ﬁl

The third question I have here 15 What iz APL geod for? APL is a Tanguage whi}h
because of the power built into the language, can be used in a wide variety af
applications, both in the scientific world and 1n the business world. I will have
some examples of that further on. 1 just wanted to go into a 1ist of some af the

features of APL that make it a powerful language. (See slide 1).

One of the first features that 1 have already mentioned 15 that APL has a
calculator mode of gpevatfon in that you can sit down at a terminal and type
statenients in an algebraic language which are executed immediately on the machine™
There are powerfyl primitive operators in the APL system which allow vou to deal
not only with scalars, which is the normal data type that most other programmf ng
languages deal with, but you gan ﬁea] with arrays as an entire entity. You can

define an array and then you can define opevations an an array which ailow you to

do some very wseful things.

There is amother feature of APLY 3000 whi;h is only available on a few other
APL's in the world. We have a vwirtual workspace. The concept of a workspace i3 ome
that semetimes s confusing to people. So I have 2 1ittle slide here that $17ustrates
what a workspace Tooks 1ike. (See slide 2}. In most languages you deal with 2

e

ceries Of programs that interact with data that you have stored in some other

part of the system. For exemple, you may write a COBOL pyogram which reads and
writes into files which are available on the system. You tond to use files to

hold the data and programs have to be grouped together in order to pravide a

useful system. But, in APL we have what 75 known a5 a workspace. An APL workspace
contains not only your date but the progrems which you are working with. 811 of
these arg namad-pbjects in your workspace, and the workspace itself has'a name. 5o
what the workspace is is a collecticn of bhoth program and data objects, that you need
te solve a particular problem. The idea of haying a workspace and collecting together
everything you need to solve a particular problem makes programming much easier. You
don't have to vely on the file system or link editors and segmenters and a lot of
other things in order to get & programming job done in APL. %o this relates back

to the earlier guastion which | posed. What is APL good fort

The concept of a workspace and the ability to group things together 1ike this
and the interactive modz in which APL runs, allows you to write and debug programs

much more rapidly than you can im any other language.

1 just returned from an AFL conference in Ottawa, Canada, where HP announced
Tts APL. At this conference there was a fellow from Europe who was discussing the
usage of APL in Europe. Whati ke did was to go Into several small companies that
were using APL Tn Eurape ard find out the kinds of applicztions they were using
it for. He looked at the number of Tines of code generated by the various companies.
He came o the conclusion that the total amount of program development time spent
by these companies was three times less tham it would be in any other programening
language. 3o, what 1= APL good for? It is especially good for cutting down the
amount of time the progranmer has to be involved in actually writing an application

or solying a problem in APL,

73

Let me g0 on and talk about some more of tne other features of the APLNI0NO00.
I have talked about the primitive operaters, the virtual workspaces. LUWe have
interactive debugaing n APL. What does this mean? Let's suppose you write a
progeam and it has a variable ¥. And this particular variable you have forgotten
to defing. You know what happens in a FORTRAW, or ALGOL, or SFL program? If
you reference wariable ¥ that vou haven't declared the campiler gives you an
error and stops and won't Jet you go any further. Well., in APL when you get to
the paint where you are trying to use the valua of ¥, the APL interpreter realizes
there is no value for V. It prints out the Tine in which the particular instance
of ¥ occurred, puts a pointer under the varfable V, and tells you that it has a =
value error. It doesn't know what the valye of ¥ is5. At that point, wou can enter
the value of ¥ and continue the program from where you Yeft off. 1f vou have a
syntax error, mismatched parenthesis or something 11ke that, at the point the APL
system finds this error, it stops and points £o the place at which it found the
error. It tells you 1t has found 4 syntax error. You can go in and change the
program yhere the error occurred and continue froem that point or some other point
in that ﬁrngram. A5 you sit and debug your programs in APL, the entire power of APL

is available to you in the debugoing process. o,

We have @ built-in editor in APL. APL functions and ﬁPL character arrays can
be called into the editor. You can make changes and delete 1ines, The Flavor of
the built-in editor in APEAIOGD 15 very similar to the editor that already exists
pon the 3000. The editor in APL knows about APL data types and it kmows about BPL

programs, 50 yau never have tp exft the APL system in order to edit programs or data.

T4

Anather feature that we haye in APL 3000 which doesp't exist in any ather
APL that I know of, 95 that we have two languoages which coexist, and operate on
the same data. You can write programs in e{ther of these two languages. The two
languages are APL and APLGOL. APLGOL is an ALGOL-tike control structure that is
placed around APL statements and T have an example of that later on. What APLGOL
tends Lo do is make the flow of control in your program more readily wisible ta
smeong who 15 reading these programs later on. You can also put comments in your
APL program and that doesn't huet you, becayse when the APL system recognizes a comrent
it simply iynores the comnent from then on. The comment cnly takes up space off linz
in the disk and is mever actually swapped into the main core where 1T would take up
voo. The anly time it is swapped in is when you are back transiating an APL progran
in order to edit it or change 1L and then you would want to look at the carments

and see what they were.

The last feature of the APLNI000 that differs from other APL's is that it s a
dynamic compiler. By that we mean that it compiles insiead of actually interpreting
the code. The first time it sees a line ft hag never run before it compiles some
code for that line and that code s kept in the workspace. When you come back to
run the function adgain it just reexecutes the coapfled code. We have seen speed-ups
on the order of two or five to one, depending on the exact problem, between 2 compiled
and 8 noncompiled version. The first time you run @ function 1t is noncompiled and
it witl get compiled as you rum it. From then an it will stay compiled providing
the type:s and shapes of the variables involved do not thange, If they do change,

the system automatically knows it has to recompile code becawse the code generated

before 15 no longer valid.

Ta

I would tike to show you a couple of examples of the kinds of things you
can do in APL. I have gne s11de here that illustrates the calculator mode of
operation. (See slide 3}. At the bottom of the 51ide it shows how to calculate
am avarage in APL. This illustrates bath the calculatar mode of operation and the
powerful fumctions available because we have here a variable X which has been assigned
the vector of values 100, 86, 75, 95, etc. This statement sets up the variable £
and allocates storage for it to be placed in without the user having o get involved.
You can then calculate the average of those mumbers by surming 211 the elements of X
and dividing by the number of elementz im X. Since X is stored as an APL data type ﬂ“ﬁ
which 15 a vector, the APL system knows about its length and knows haw ®o add all
the elenents of that vector. These operations are available within AFL and you

don't have to write a separate program to do them.

To giva you a Tittle move of the flavor of APL, 1 have an example here of 2
problem that actually came up in the research lab where 1 work. One of the fellous
wanted to calcwlate tha following integral. 1t is a fairly standard integral. It
15 the SIN(T} over T. He wanted to find the value of that integral from zers to X
where X was 3.2, Mow this integral does not have a closed forw solution. 30 ane “
way of approximating the integral is by taking a summatfon. You simply divide the
interval up into & number of 1ittle spaces, eoach one of width dt, and then you evaluate
the sin at sach of those points and add the whole thing together. S0 a series
approximation for the integral, taking advantage of the fact that some cormon terms
can be cancelled, Tooks somethipg 1ike this. {See top of s1ide 4). As an exercise

I programmed this example in APL and BASIC.

7h

The BASTC solution For this problem is wery similar to the FORTRAMN solution
or the ALGOL selution, for that matier, {(See middie of slide 4). FirSt you have
to declare the variables and tell the system what they are going to be. (Line 10}.
In this case we are gofng to use Jong fleating point. Otherwise, the answer would
not have been accurate emough. Then we had ta initialize some variables and
set up a little FOR loop which says FOR I = 1 to 4. (Lines 20 through 30}. Essen-
tially, what we did was to evaluate the integral for 4 different values of the
increment of susmation, DX. We wanted to compare the value of the integral we got
to soe how small a value of DX we nesded to give ws the appropriate accuracy we
were looking for. S0 you have an outer FOR Teop that does the four different wvalues
of D¥ and then there is another FOR Yoop, FOR T = 1 to L, where L is the number of
things you are going to sum. (Line 70). You then do a sum which i5 5 plus the 31N
term {Lina 80}, and storc the answer when you are done with this inmermost FOR Toop.
fLine 100%. When you are all done you con do a matrix print ¥ (Line 120) which in
BASIC prints out the entire array of the four selutions that are shown here. 5o

this problem is about a ten or twelve line program in BASIC,

That sawe solution in APL {5 given in one 1ime. [See bottom af shide 4). What
I dfd was write a function which could then be called with the different values of DX,
The first three Sines are a request for a display of the functien FUN, and then the

fourth 1ine calls the function with the various values of DE. The answers &r¢ printed

out aptomatically.

-

What I am trying to show hefe is that the amount of programming involved
to do the same thing in APL as opposed to BASIC 9s significantly different. I will
read the APL solution from right to Jeft because that s the way APL operates.
I generated 3.2 which was the range over which we wanted to do the summation.
1 took DX and divided it dnto 3.2 and then I took the index generator in APL; (1)
it generates all the numbers from one to the maximun number that we want. Essen-
tially I qenerated the integer indices that were needed and assigned them to a
varizble 1 called X5I. Then I added a -.5 so that the series of integers becomes
the series of half integers .5, 1.5, 2.5, etec., that iz the demominator of the
expression. The numerator of this fracticn that occurs as one term in the series
is the same series of half integers multiptied by DA, which 15 the Tncrement size.
S0 we take the 3IN of DX times this 1ist of half integers and divide that by the
Tist of half integers and them the whole thing i5 summed using the reduction operator
in AFL. The result §s put imtc R. R iz the result of &he function. 'When you runm a
function the result is then available to be assigned inte something else. Since
T didn't assign it in the 1ine where T called the function, it simply gqets printed
out on the console. In APL, if you don't specifically assign something to a variable}xﬁ
it will get printed on your console. You don't have to write a special output state-
ment to get things to print out for you. That is the flavor of the APL solution of

this problem. 1 might point out some other differences.

In BASIC, the greater tham sign {») is the prompt that tells you that you are
ready to input another BASTIC command. However, in order to get a program which you
have written to run you have to enter the command RUN. [See 1ime following 1ine 120).

In BASIC you are normally im a function definition mode. In order to a¢tually rum a

'-.IIB

progras you have to get out of that mode and tell it to RUN. Tn APL you are
normally in an execution mode. In order to define a function you have o flip inta

the function editor so that you can actually define a function.

There are matrixz operations available in BASIC but you have to preface
the statement by MAT to signal the BASIC interpreier that a line contains a matrix
operation (e.g. YTine 120). 1In APL 2171 of the variables here can be matrices and in
most cases theﬁ are. APL treats matrices im the same way it treats scalars, etc.

vou don't have fo do anything special te get it to handie matrices.

1 have another example which is a little more lengthy, but it is faiely straight-
forward. It shows how APL can be wsed in the business community. Here is an example
of the kind of things that are fairly easy to do in APL. We have here some data
which is revenue for several different salesmen for several different products {%es
glide §}. Each number in this matrix represents the revenue generated by a particular
salesman for @ particular product. For example, Smith sold $140 worth of shoes,
$19 worth of hats, Hall sold %689 worth of pants, etc. HWe have snother matrix
which represents the expenses each salesman incurred when selling each of those

products. S50 these two matrices can be primitive data objects in APL. You can talk

sbout relations between the matrices.

These matrices were enteved into the APL workspace as shows in 516de 6. You
simply state that the revenues are qoing to be a 4 ¥ 5 matyrix and here are the
numbers. You input the numbers and can ask for the metrix of numbers to be printed
out and it is printed out in the format that you have specified. It is stored
internally as a matrix with four rows and five colunns. To calculste the coAm 55 1 0ng

(See slide 7) you subtract the expenses from the revenues and that 15 the actual

To

revenue each salesman has broughi in. Then you miltiply that revenue by the
appropeiate constant you are using for commissions. In a singie 1ine of APL youw’
can generate an entire matrix of commissions Tor each of the salesman for sach

af the products.

Let's calculate the prefits {(See s1ide 8). In order to get the profits you
take the reverue and subtract from that the sum of expenses and the copmi $sions.
A single APL stateasnt calculates the profit. The result is a matrix of profits by
salesman and by product Time. .If you want the profits by product Tine, what you
really want is the sum over the rows, and that gives you for every row in the matrix
the total apount of profit for that product. If you also want thelprufﬁts by sales-
persan, them you 40 the sum over the cther coardinate of the matrix which is to say
you sum down the culuﬁns. ind, in that case you get the profits by salesperson. 1F
you want the total profits, that is the sum over all profits. In APL this is written
+/+/PROFITS which gives you the total profit for your company. By taking advantage
of the array capabilities that are available in APL, you cam structure your praoblen
in such a way that it is wuch easier to think about and much easier to extract

information out of that data base by the operators that are available in APL.

1 said earlier that we have two languages which coexist within our AFL system,
both APL and APLGOL. I have & brief example that shows the difference belween the
two languages. (See s11de 8). Here are two identical programs called Toss and Flip.
When wvou call T055, it prints out either "HEADS® or TTAILS" based on a random numbor

that it gets from the APL system. In APL the function wolld 1ook 1ike this. (Top of
slide 9.

B

F

In line O we have Toss, which is a function name. and COIN is a local variable,

local to that function. COEM 98 assicred & vandom number bedween one and twe in
1ine 1. Them line ? deterinines whether COIN s equal te 1, if so you print out’
the string 'HEARS'. IF COIN is 2 you go down teo Tine © and print out the string

'TAILS'. That is the way it would Took in APL and that is probabiy not the clearest

way to struciure your program.

In APLGOL, this function looks wery much 1ike the ALGOL procedure you might
write to do the same thing. 1f c¢oin equals ong, then print 'HERDS', otherwise print
'TAILS'. Essentially, what AFLEUL dees is gererate the appropriate branch state-
ments that are needed to get this function to work within the APL syztem. As 1 caid,
the APL and the APLGOL functions are compatible. You can call one from the other
and you can write your programs in whatever language you feel comfortable with.
Another fact thet came out of the talk on AFL usage in Europe which I referred to
earlier was that peaple tend to wriie large systems of APL programs as collections
of small procedures of ten and forty lines each. These procedures do specific thinas
and they all have names, etc. This feature 15 very halpful in debugging your progeans
because you don't have to bring in long, lomg, long source programs of many thousand
of lines and tey to correct an error in ling 1500 of some incredibly Tong program.

If you keep your programs sRort, Tt is much easier to debug and to find our the Flow

af control within your system.

Let me just recap by going back to one of the earlier slides (See glide 1 again].
After recapping, I can answer any questions you might have. The features of the
APL 3000 are: 1) This is the only true calculator mode language that is available

on the HP-3000. 2) It has very powerful operators built into the language. For

g1

example, there is an operator available in APL which will sort & string of numbers

in ascending order. You don't have to write your own sort procedure to do that.

3] You have virtual workspaces which allow you to collect together all the programs

and data which you want to use to solve a particular application. 4) Interactive
debugging which helps you write programs faster and debug them more quickly.

&) The buflt-in editor which allows you to edit both programs and data within

your APL workspace and keep it im a2 fashion that is compatible with APL. B) The
coexistence of APL and APLGAOL im the same workspace environment, 7) The dynamic

conpfler which speeds the execution af the APL progrems so that you don't continually ”tﬂ

pay for the interpretive averhead.
- At this point 1 will open it up £o any questions anyane has about the system,

Q: Can you ¢all FORTRAN subroutines from APL?
fi. You cannot at this time weite a FORTRAN subroutine and call it from APL. However,

you can access files that may have been genevated by a FORTRAN program.

0. Do you have an interface to IMAGE?
A. UWe don't have a conpection te image. We do have & connection to the file 5ystem,’*ﬁ

only, at this point, However, we are lookimrg toward conpections to image and other

lanfuages as d possible future extension.

0. It sounds Yike APL has reduced the distinction between code and data which s

built into the 3000. .Is this true?

fi. Ve found that a lot of the newer programming lamguaqes that are becnming available
and a Tot of the features that are regquired for people in the wniversity environment,
etc., tend to go away from the concept of distinct ¢ode and data. One thing, for

exampla, wou can do in APL wery easily, is weite an APL program which ©an. from the
input it receives, write gnother AFL program and ga off and execute that program.

gz

c1 g
-]

This is one of the reasans why we went to APL. [might just add that one of the
reasons why T got interested in APL originally i1t because 1 had an application wharae,
based an information I got from the user, | needed to write & program which would then
do same special things for the user. I wiote an application in about three months

in APL which then toock about eighteen man months Lo translate into ALGOL. What this
prograin does s take input from the user and generates an ALGOL program which runs on
our system. That was a much more difficult task in ALGOL than in AFL. However, thers
15 51711 a distinction between code and data in your workspace. It i3 a fairly rigid
distinction. You cam turn a piece of code into a piece of data and then work on it

as a piece data and then turn it back into a piece of cade. There are safeguards in
the APL system that do not et you read the code directly as data; you have to actually
go through a system operator that i1 turn it from & piece of code into a piece of

data. It will sti1} give you protection.

Q: How do you interact with the file system in APL?

A The way we interact with the file system iz through a concept known as shared
varfables. You can take a variabte in your workspace and specify that this variable
i thared with a particular File on the 3000. Then every time you assign to this
variabte you put something out ®o the file and everytime you read from the variable

you read something 1n from the file. Essentially. we give you access to all af the

file controls which ame available on the 3000,

The reason we have wot put 2 Tot of effort into designing a file system, as
many of the other APL systems have, s because we felt that since we give you a

virtual workspace, you should be able to store all the data and programs you need in

ad

A

the workspace without having 10 go to a file to do L. MWe also wanted to give
you the full capabitity of the MPE file system. We don't have any special operators
which store an object as an APL data object which then cannot be read by anyone else

unless they know what APL data objects Touk 1ike.

1: Is APL good for writing simubators?

A: APL is wery well cuited for weiting simylators. A3 a matior of fact, ome of

the things that one of cur fellows im the tab did fov fun was to write @ simulater

Tor Lhe TATEL 050 microprocessgr. The simyletor has all the cormands of the micro-
processor as an APL fyrction, He ¢an run that simulator in APL and he cam alse ’%ﬁ
produce 8080 maching fnitruction. The HP-26471 terminal khas an 8080 in it and you can
attually download instruciions into the B0BO amd run them right there. This was

kind of an interesting APL program which wrote prngr$m5 for the terminal and could be
used to change the operations of the terminal. We are not necessarily recarmending

that you do that.

Q: What kind of protection is available im APLT

f: When you Yoad vour workspace, you load in a1l your functions. 1f you want to =i
copy a2 particular function, you can say JCOPY followed by a Tist of functions firom

the particular workspace. APL will tell you which ores it couldn't copy. There

is 2 protected copy which will not wipe out @ function by the same name in your

workspace and if you use that feature APL will tell you which abjects it was unable

1o copy,

If you Tock a function, them ne one can get in and alter that fumction.
We have some interesting additions to our APL system in the area of Tocal
variahles. If you have a variable declared as local in a function, it will shadow

whatever value the global wariable had when you are running inside the function.

24

Howewer, it is possible during debugging ar under program control to go back and
find out the value of the global variabie. In most APL sy=tems that is nat possibie,

but Tm ours it {s.

(: How much do you pay for all the power of APLE

A: You do pay some costs for the interpretive overhead, i.e. the ability APL ygives

you to fixg up your programs: when yoo bave an arrer, How nuch yau gy cepends an

your particular application. fgain, let e rafer 40 1he paper on the Eurcbean AFL stady.
Thery Todnd i zome systons the costs wos essontially fhe seme, hecadse Lhe.amcunt

tney spent on additional CPU time, they saved on peing able to prograr their soluticns
mire quickly. A typical program only took about throee or four minutes of CPU tire

te run, but it had te be run opce a month and updated continuously., They found that

APL was cost effective in that cese. In genoral, you do pay something in cverhead

for all the power available to you, but it is nof that bad.
0: tHow big is AFLY

B: APL is a subsystem on the 3010 similar to BASIC, ctc. 1t takes o fadv amgunt of

code, but code is shared betwesn all APL users,

Let me just say [will be giving a demonstraticn of the APL 3000 on our 2641
APL terminal at one of the birds of the feather sessions this evening. 1f you have
further questions please core to that session and we oill give you some anline
demonstrations of the systen over the phone Tines to Palo Alto. T will also be glad

o answer your questions aftor this session. Kight now we are about out of fime.

FeaTures oF APL 3000

CaLcuLaTor FopE OPERATION

PowerFuL PrIMITIVE OPERATORS

VIRTUAL WoRKSPACES
InTERACTIVE DEBUGSING
BulLT-1n EDITOR

APL awp APLGOL

Dynastic CompiLeER

SLIDE 1

™

SATVNINYT HIHLIC

B32f)

fll UYMW IV LLFTMIH
2]

5LIBE 2

SE9° LA
ADFLE LY
YOR(/)25 EEAY
DE S8 LB £L S8 §f 98 0OT+X

dy NI 3ovHIAY
MY SNLLYINDTY)

NOIL¥3d0 JOON ¥OLYINTTY)
SHIQUAN TIONIS S¥ ATISYT S¥ SAVHHY STTINVH

NO11¥Y3d0 40 AHJYWIIIH ON

* OOF ¥

SHOITLINA QNY SHOLYH3AD ANV

SLIDE 3

(aH ttufnmhhqiwt

L

(N-2)dx<3.2

S ~ < SINLN-4) dx]
81(3.2) 5 T (N2

Basic -Solution

»LIST
AEPADB
18 LONC »,5,Y[4]
ZB D[1}=.1
21 DI21=.@1
22 D[3]=.ap1
23 p[4)=,n00]
28 FOR I=1 TO 4
S L=CEXI{3,2/D[11}
68 E=p
74 FOR Hal TO L
GE] SeS+SIN{ {N= .8 %Nn{I]] F{N=-_5]
B¢ NEXT H
1e@ Y[I)=5 - *
118 HPXT T
1284 MAT PRINT ¥
»RUN
ARPANS
1.85152354/8519127L+AD 1.8514321R827TAIRAL+AN
1.85140@917321872L+40 1.8514¢0%9%1A1B0L+EA

APL Solutien

{cR' FuR*
F+Flm oY
Be4 [{10DYEET= 530 _S+XST+[3.24¢0X

!

FUN .1 © FON .01 O FUR .001 © FUNF .0001
1.851528522

1.6851402173
1.85120091)
1.8515300897

SLIDE 4

B

: 00°9L QQ°6ZT 00°66 0O'HEZ 0Q'LB
00*SHT Q0*ZT 00°0SZT QB*GEZ 00°DES
' ' OD°"S5CZ OOD*Z08 CQO“EZ o0t oo-0aQe
0O"0ER DO*HE 00" 068 00"5% CO QLT
. TIVH THEVE TT0E BIIAS SANGE
. _ SEFRGIXE
: GO"LE Q0"OZT OD'BOY 00" 04T 00'6Z8
. D0*658 "00'9S 00°Z58 QO0°Al 00°ZAQ
_ Q0"Z931 OD-TI6mT OO'E&Z 0BGl OD"SEE
. DO"EHE O0"®T CO°GZ6T OD-OHT O0*OSE
. TIFH 188V TIve HdIks SHEOP
: SEANA NG

) i3HY S3SNILHI ANY SINNIAIY ¥NoA
ANYdWOD TIVWE ¥V JO HIDVNY) SITYE ¥ SY

BN e

5008
Fdiird

FLVFH
S3¥0ONHS

510048
Sdhvd

sIvg
SEQMNE

-

I:'j 0

SLIDE 5

L8 OZL 609 O%T
. - GSS 59 Z5E HT
zal TEHT E£RE &7
]) : . £nT 1l g25% OhT
CRDIEYEE

. s 8 Dzl B0G OnT 6ZR 658 95 5% w1 L89

_ p'E9Y Tshl £6L GL SEE EWI nl gzE1 OfT OBTY6 h-S3A4FASY

1SMOT04 SY 2DVESAUON
4y NV OLNI G343INT JuIM 3STH]

BZE
(AR
gik
UEl

i

SLIDE B

il

4

e

r/l nm_.fxuf_n.@hhu_qimr_

EFENEJXE-SHAVTARE JO=T Q"+ 0TS FTHNDD

zBY"
298" TE
' L4
0

c hi'EE 0
BELTE o 4]
BLL LN ReTOT BEET

o LEZ"hE 59 n

tr
ft

ng" Lh
BT GE
§a°1
"L h

SASNIAX S-S GNTATY JO=2807

ROTSSTWHO)
LB gzl BOo onl
B59 95 £%d nl
&87T T6hE% EGE BT
EnY I 6T Onl
Fafwasdy
ag FET BH n&t
cHt &% OEEY G6E
ged Zo® €4 a1
OEh kY 064 59
SIFNEI X

BLE
(4R
2¢E
0GT

(A
dw
08
&1

SLIDE 7

o

r ad ___“__:_u 1&@hhqiut

gag' £21€
. BijA0Hdf+f+

S11408d V10l

4oL 0LE,_, UETTYGET
SLIAH £+

ghTZET WSS 0E0 EELTHLAT

+

. NOSHId SIS AE S11d404d

neW 50 L& E€6E hEW'BFE BLLTO8L
. S1Idpddf+.
_ I Lonandd A9 S1I04d
BTE 0T 6_ SLtLEn nTT_ 5L HTL
Zetl T8k LI REH_ 5BZ_ 9T8 L6
£4_ ZEL'4n9 BLtE5Z Lmhce gut el
LBE_ Bn_ 89LTTLE g OL 49" 56
s1Id0idd

FOISEIAROIEESHES X =S TANT AIY+E LIS 0Hd

S1140%d

¢ .

SLIDE 8

Q3

r[_n_.._m__ _.__Hu.tnqmrﬁnmqi TH

£

ayay ol ¥31sS¥3 SI 3IHD 1081 THL

SWYYDO0Hd TW2IIN3AAI OML

. SIIV.E FHAAGTIONS JKE [a}
2174) L STIVE, Ls)
_ SAVEN 2573 [n3
d17d : WEOP S, re?
EIIPL MERE T=%I05 &I [z}
JIT8 LEA AT Rdrly . [rl .
Savan INTOO A TTd SNAGFI0Ed T Iel
4114
_ 097V - -
] STIVE
SE0L .
sTrvg ¢
$50% JOTIVE. 4 d £5]
SOVaN 0+ (xl
: 5563] : JSO¥RH, EEL . .
) SFFIH . LitTaNI0I~}+ (<}
. SF0E TET+NI00 [t]
) 51TV g NIDJTESOL {cd
. S50E
ay¥

E\ Tl

SLIDE 9

L

