SOFTWARE OPTIMIZATION

THROUGH RESEGMENTATION

by

MIKE CLARKSON

presented to:

HP-3000 USERS GROUP MEETING
in

MIAMI, FLORIDA

February 27, 1975

Section I[-1

I. INTRCDUCTION

During the past couple of years, we at Data Base Management '

Systems, Inc., have developed quite a few large, sophisticated soft-
ware packages. These packages tax quite heavily the resources of
the HP-3000 and tend to exercise the machine, both hardware and
software, to its limits. In order to keep our program development
from overwhelming the 3000, we have developed methods for efficiently
maintaining our source code and for optimizing the execution of our
programs, It is exiremely important to have the most efﬁciént
software possibie when dealing with a computer such as the 3000,
which is very sophisticated, but yet has such small memory limita-
tions. The 3000 can perform very well if the programmer will take
time to optimize his software so that it complements the 3000's
resource management. This paper will outline several areas for
program optimization and will expound on the area of program

resegmentation.

LSO P

Section II-1

II. SOFTWARE OPTIMIZATION

The need for program optimization should be intuitively
obvious, since it is very unlikely that a program will exist in its
most optimal form when it is first written. Since most sophisticated
programs will require optimizing before they will run at all, pro-
grammers will make a "first approximation" before the program is
even run for the first time. From the initial run on, the programmer
will continuously learn new short cuts as well as observe his program's
running characteristics; thus, there is the continuing need for program
optimization. There are many areas available that the programmer
can attack in order to make his programs more efficient. Following
are several examples:

Since MPE is a relatively unknown factor to most programmers,
one should avoid calls to MPE as much as possible. If a call to MPE
is unavoidable, one should attempt to call the lowest level intrinsic
available in order to avoid unnecessary overhead, even if it means
making the call in privileged mode. Privileged mode execution need
not be avoided as long as one is very careful of each instruction that
is executed while in privileged mode. The higher level, user mode
MPE intrinsics have a lot of overhead determining if the user has the

capability to perform the desired operations.

II-2

Another area for consideration is minimizing disc accesses.
If small scrétch files are necessary, one should weigh the advantages
of a local dynamic array or an "OWN'"' array as opposed to a disc
file (keep in mind, however, that a larger stack could cause more
disc accessing by memory management). Also, we have found that
it is much more efficient to have our own buffer manager which uses
direct access disc files with "no buffering” option, rather than de-
pending on the file system to optimize our disc accesses.

Another area which is not in the scope of this paper, but is
well worth mention, is modular, structured progranﬁming with clean

paragraphing in order to minimize program maintenance time. 1

Finally, but not exhaustively, is the area of program re-

segmentation which is discussed in detail in subsequent sections.

Section III-1

III, RESEGMENTATION

We have found that one of the best and yet simple methods of
program optimization is resegmentation. Since the memory size of
the 3000 is limited to a maximum .of 64K words and many SPL pro-
grams require more code than available memory, the programmer is
able to group his code into segments by using the SPL command
"$CONTROL SEGMENT=name''. This is called segmenting the code.
One should attempt to gather into a segment, procedures which call
each other since there is additional run time overhead involved when
one procedure calls a second procedure that is in a different segment.
If a relatively small procedure is called very often by some other
procedure, and the small procedure is in a different segment and can-
not be moved, then it is useful to make a copy of the small procedure
and make it a subroutine inéide the calling procedure. This eliminates
both overhead of PCAL execution and segment swapping. We have
found that an optimal code segment size is around 2000{octal) words.
Reasonable limits are from 1400(octal} to 3000(octal} words. Procedures
which are called infrequently such as initialization, termination, and
error handling procedures should be grouped into larger segments.
One should use as many segments as necessary to make his program run
efficiently, but at the same time, should be frugal with segments, since
there is a hardware limitation of 256 segments which can be active at any

one time,

-2

Not only is it advisable to segment one's code optimally, but
at times one should also segment his data, the latter being slightly
more complicated. For example, say a program needs a 4000 word
buffer at various times during its execution, but it is undesirable
to incorporate the buffer into the normal stack, then an extra data
segment can be utilized. The intrinsic GETDSEG can be called,
giving it the desired buffer size and it will return the DST number
of the extra data segment. Then, during further execution whenever
it is necessary to access the buffer, call the intrinsic EXCHANGEDB(DST#)
and the DB register will then point to the extra data segment and it
can be accessed just like normal DB storage. Remember that the
regular storage normally accessed via the DB register and the exira data
segment cannot be accessed simultaneously. In order to switch back
to the regular DB storage, call EXCHANGEDB(0) and the DB register
will be returned to its original value. Many extra data segments can
be maintained in one program, but it is the responsibility of the program
to keep track of each extra data segment's DST number. When the pro-
gram is through with its processing, it is necessary to release each
obtained extra data segment back to MPE by calling the intrinsic
RELDSEG(DST#). The program must be in privileged mode in order to
call any of these intrinsics. It is important to release all extra data
s‘egments back to MPE, or they will be lost until the system is COLDSTARTED

(or COOLSTARTED).

II1-3

Once a program is segmented, it can be run along with one
of the available monitoring programs such as TRACE (described
in subsequent sections) which will produce statistics describing
segment swapping, et cetera. The program can then be reseg-
mented by either recompiling after moving the "$ CONTROL SEGMENT"
cards or by using the SEGMENTER command NEWSEG. The pro-
duced statistics will indicate which procedures call which other
procedures in other segments, and using this information, the
programmer can regroup procedures which call each other most

often. The resegmenting, monitoring process can be performed

repeatedly until the most optimal segmentation is achieved.

Section IV -1

IV, AVAILABLE PROGRAMATIC ASSISTANCE

Presently, there are three packages available to aid the
systems programmer in optimizing his software. They are
(1) SAMPLER; (2) AUTOSEG; and (3) TRACE. SAMPLER is a
software sampling system used for measuring the relative time
spent executing various sections of code. SAMPLER requires
an extra clock/TTY interface board to be installed in the system
before it can run. The SAMPLER documentation in the appendix
completely describes all necessary steps. Be sﬁre to read the
complete documentation before attempting to use SA MPLER.
AUTOSEG is a performance enhancement tool which provides for
the automatic resegmentation of programs based on data gathered
under actual program operation. AUTOSEG in its present form is
not very useful because it is not quite smart enough to resegment
a USL file any more optimally than could casually be done by a
programmer. Sketchy documentation does exist in the appendix
describing the three functions of AUTOSEG. AUTOSEG does prompt
the user for the necessary information. TRACE uses the hardware
"trace' facility to collect data pertaining to processes at the time
of intersegment transfers caused by PCAL's and EXIT's. This

package is very useful in helping the programmer resegment his

programs by hand. The following section describes TRACE in

detail and additional information is located in the appendix.

Section V-1
V. TRACE

Thié section will discuss in detail the software monitoring
package TRACE which analyzes procedure calls external to a seg-
ment, showing caller, callee, presence of the called segment and
frequency. In order to use TRACE, a new version of MPE must
be generated and the produced tape must be COLDSTARTED. The
version of TRACE to be discussed runs under MPE320008. 00, 09,
It is important to note that TRACE periodically halts the machine
and should therefore be run only when a program is to be TRACEd
and the regular operating system should be reloaded before aﬁy

normal machine usage is resumed.

Following are the steps necessary to generate a TRACE cold
load tape:

1. -Restore all files from the distribution tape which belong
in group/account "OUR, SYS."

2. Patch INITIAL to obtain a data segment for TRACE by
changing an "IF FALSE THEN" to an "IF TRUE THEN",
The octal instruction to be changed is 25001 which is
found around address 2244(octal}). Enter the following
command sequence:

:RUN PATCH
FILE=? INITIAL
2 M,¢, 2244
25001, 0600

2 E

3. Execute the following jobstream to generate the TRACE
version of MPE:

:JOB MANAGER. SYS, OUR
:PURGE ININ
:SPL M10MOCOB, , $NULL, S10S000B, NEWM10M
:SPL ININY, ,, NEWMIOM
:PREP $OLDPASS, ININ;CAP=PM
:SAVE ININ
:PURGE NEWMI1O0M
:PURGE EXIN
:SPL MI11MO000B, , $NULL, S11S000B, NEWM11M
:SPL. EXINX,,, NEWM11M
:SAVE $OLDPASS, EXIN
:PURGE NEWM11M
‘EQJ -
:JOB MANAGER. SYS
:FILE SYSTAPE;DEV=TAPE
:TELLOP MOUNT BLANK TAPE ON TAPE DRIVE UNIT
:SYSDUMP *SYSTAPE
YES
HS8
<{ BLANK CARD»>
NC
NQ
NO
NO
NC
NO
NO
YES << SYSTEM PROGRAM CHANGES»
ININ, ININ, OUR
EXIN, EXIN. OUR
& BLANK CARD>
NO
&BLANK CARD>®
:EQOD
:EQJ

4. Note that EXIN is a USL file and ININ is a PROG file.

5. The tape produced by SYSDUMP should be loaded with

the COLDSTART option.

Once a TRACE cold start tape has been generated and a
program is ready to be traced, perform the following steps to ob-
P tain printer output describing the program's segment activity:

1. CCLDSTART the TRACE version of MPE.

2. Run the program to be TRACEd from a terminal,
generating an LMAP on the line printer. If the CSTs
are not allocated contiguously, abort the program and
run it again until the CSTs are contiguous. Make sure
the program does not terminate until after step # 3.

@ 3. From the console :ALLOCATE the running program.

4. Allow running program to terminate.

5. From console :RUN TRACE.QUR.SYS - respond to

prompts as follows:

? INIT 0O
? TRACE %n/%m

where n is the first CST number on LMAP
and m is last CST number on LMAP

?RUN

If the system is equipped with an extra clock/TTY inter-

face board, rather than entering 0 with INIT, enter the

decimal DRT number of the clock board (eg. ?INIT 12).

6. Hang scratch tape on tape unit #7 with write ring in,

7. From the terminal run the program to be TRACEd with
valid input, output, etc.
8. When the program terminates on the terminal:
From console continue responding to TRACE prompts
as follows:
? EQF
?8TOP
?CLEAR %n/%m {see abové]
? EXIT : '
9. From console :RUN TRACERED, OQUR. SYS
10. Respond to TRACERED prompt with:
?SEGMENT CALLER EXIT
11. Statistics will be printed on line printer.
(Note: If the machine halts during execution of the program being
TRACEd, merely hit the RUN/HALT switch and the machine will
continue executing. The halts are caused.by such things as no
write ring in tape or printer being used by another process. Also
make sure that the program to be TRACEd is the only program run-
ning on the system [ie. besides TRACE. OUR. SYSJ).

The next page is an example of one page of the output

geneiated by TRACERED.

p.

2'e9 2t 90200 L% 920 . . W

— _B°9F...}_ — 00100 L¥T.920. .__%%*. __.__2%°1_._v°Ly _6. 0°S6__61 200 — 55

0°00T7 1 E4000 L% 920 00° - 8€° 0°oot I 0°s 1 1000 0°09 2t 02 vt %

T

~._0°001.SE. ___12%00 €€1 920.__00°____00° ____0*_ __ 0. . _o0°*00vLSE_ 100 _9°89__1€ 13 0t 25

. : : . 1 5]

0°00T 1 $EET0 SET 920 00° 00° 0* . 0 0°001 1 100 0°001 1 t LET e

: oo

0°00T 6 1€L00 221 920 00° 60* @°LL L 0°09 6 210 <

0°02 1 %2100 €91 920 <

W, . 90100 191 920.._. o e . . —)

0°02 1 #9000 091 920 . ’ g

0°02 1 90000 /ST 920 =

oz 0T02 ¥ souiey 99000 €ST 920 00% oo 805 o 0000 S ESEE G L 00 e e &

0°001 1 22200 221 920 00° 00° 0° 0 L9 1 900 E°EE st . 9El E

i v i

—0°00T. 4. _ 91100 %€T1 920 __.10° »2° 0°SL._€ 92 __ 0to . =

0°001 0% 91200 EET 920 00° 00° 0° 0 2°%2 0% €00 <

0°001 2 2.L200 €€1 920 11° 69° 0°001 2 2°t 2 200 jo¢

_.0°8S 69 ____ . GI2E0 9€! 920 ._ o .. e — =

L1 2 9E1€0 9ET 920 X

L A% SEL00 %ET 920 ¢

——0°*LE . %% .12900 €€1.920 __00° 60° 9°95__S11 T2l 6TL_____ too.__2°81__OF &9t set T

0°00T 1 L9%00 SET 920 00° 00° 0° 0 0°00% 1 . 100 0°00T 1 1 $€t £

T L8t 9 - 12%€0 91 920 - S o N ST d

8°lL 992 11110 SET 920 . 5

_—2T . %, _ELLOO0 %ET .920__._ .. —_ &

£'2 8 L9L00 221 920 %0° Ly g8°s 02 0001 2¢€ o0 o0°s Ll 2%9€ EET 3

__0°00T T .______. 29900 IET 920 ...00° ._00° .__ 0% ___0__ 0°00T_T__ 100 ___0°001_1 1 2EL <2

0°007 1 25200 EET 920 00° 00° 0° 0 0°0s 1 010 Z

—0°00T1..1 05200..E€1 92000 002 0. 0 0°0s__ 1 900___0°001_2 2 1€1 24

0°001 952 15100 €€T 920 G1°* 11t 9°85 06t 0°06 962 200 3

——0°007.952 €LI00 €ET 920T2° . _12°1___ L°*25..SEL _0°0s__9s2 100___e6°10__19 218 0t1 5

. L |

0°00T S% L2200 €€1 920 2¢° 6E° T 6°9g ¢ 0°001 S% 100 6°88 0% GY L2t a

9

0°00T 1 29€00 €€T 920 00° 00° 0° 0 vl 100 T

0°00T 1 1EE00 €€T 920 00° 61 0*001 I UL S 900 2

—_0°00T1 S.___ 9%€00 EET 920.__00°__ ___21°__ . 0°001 S ___ 6*9 __S _S00 i

GGy § LEEED 9ET 920 2

S*%5 9 9GE00 EET 920 %0° 12* 0°00T T1 g°st 11 %00 R

B o 1 o S YOE00 BT 920 w02 i B v 799 Y coiciininss B9 o v E£00 ___ &

0°001 42 . 09020 0ET 920 00° w2 8*0L LI £eCE 2 200 . il

0°001 %2 19020 0ET 920 10° 91° 0°001 %2 £ cE v2 100 18t €l 2L CT-44 -

— - CE —— ———— - - — FE—— ¥ — ————— & - ——— - £

0°001 1 GLE0D 9€T1 920 00° 00° 0° 0 0°0S I 200 s

0*001 1 , 20900 9€T 920 00° 0o° 0° 0 0°0S5 I 100 0°05 1t 2 22t £l

—- s i ot e ———— i e e y e e ; . '

0°00T 996 $E200 941 920 E€1° gz° 99, 2c4 * 0°001 9§ 100 6°21 €L %95 12t - c
3115% S1IVD 41730 935 NId J/1A30S O/3wrl 311S% °IN3 O03WIL 393S% *IND AMINI 11S °S8Y® S3IINISAY *IND AMIN3 93S

B 8

WYHOONd NOILONO3Y.VYLVE 3J0vHL LN3IW93S 000€dH

1 39vd

V-§

There are sixteen columns of values, four of which are non-zero
because there was an extra clock/TTY interface board in the sys-
tem when the program was TRACEd.
Following is a description of each of the sixteen columns
of information on the TRACE reduction printout (the first eleven
columns comprise the called segment statistics and the last five
columns comprise the caller statistics):
1. three digit octal CST (code segment table) number of
the segment
9. total PCAL eniries to the segment
3. number of PCAL absences only (EXIT absences cannot
be traced)
4. absences as a percentage of total entries
5. three digit octal STT (segment transfer table) entry number
6. total calls to that STT entry
7. STT entries as a percentage of the total entries
8. number of timed STT entries (total number of STT
entries on which it was possible to gather timing information)
9. number of timed entries as a percentage of the total STT
entry count
10. average time per STT call in milliseconds with all TRACE
overhzad removed (this time is the time spent in this segment
less the.time spent in other segments which were being traced

and were called by this segment)}

11. standard deviation of the time per call in milliseconds

12. three digit octal process identification number of caller

13. three digit octal CST number of caller

14. five digit octal delta P (ie. offset into calling segment {o
PCAL made to called segment)

15. total calls made to this STT by the caller from this
delta P

16. number of calls as a percentage of the STT entries

An example of how to recognize potential optimizatioﬁs is as
follows: Notice that the segment at CST #140 was called 35 times
which caused 31 disc accesses or 88.6% of the total. This is a very
high percentage to have causing disc accesses. The only entry point
in the segment which was called was STT #001 and it was called from
only one place, which was 421{octal) words into the segment at CST #133.
Now one would look at the LMAP describing these segments and
determine which relative segments within the program were loaded at
CST entries 140 and 133. Then looking at the PMAP of the traced pro-
gram, one would analyze the present size of the segment corresponding
to CST #133 to see if it has room to add the code of the RBM located
at STT #001 of the segment corresponding to CST #140. If there is room

in the segment, 'he RBM can be moved by using the SEGMENTER

command NEWSEG or by changing the appropriate '""$CONTROL
SEGMENT" card in the SPL source and re-compiling the procedure.
This one optimization would save 31 disc accesses. It is important

to also determine if there are any other procedures in the CST #140
segment which make internal segment calls to the STT #001 procedure;
since they could make more than 35 calls the expected optimization
could cause a degradation.

The timing information found on the TRACE reduction print-
out is also useful. Through close observation of the timing statis~
tics, one can learn where in the code a major portion of execution
time is being spent. For example, two entry points (STT #001 and
STT #002) in the segment loaded at CST #130 were each called 256
times. Note from column ten of the TRACE reduction printout that
each call to these entry points averaged 1. 21 milliseconds and 1.11
milliseconds respectively in duration. This time factor is somewhat
high relative to most of the other TRACEd STT entries. Given this
fact, one should analyze the code of the procedures which correspond
to these STT entries and determine if any code optimization could be
performed in order to help these procedures execute more quickly.

Following are some helpful hints for using TRACE that should

be utilized. 1In o -Cer to get good timings for every RBM of the program,

V-9

the USL file should first be run through AUTOSEG's NICRSP processor
to generate worst case segmentation so no internal segment PCALs
are executed. This is done by (1) make a copy of the USL file;

(2) :RUN NICRSP. QUR. SYS and give it the name of the USL copy;

(3) then prepare the resegmented USL copy and run it through TRACE.
There are two things to keep in mind when using TRACE: (1) TRACE.
OUR. SYS runs in privileged mode so the user needs privileged and
account capabilities; (2) TRACE, OUR. SYS uses its own tape driver
for I/O so MPE must not be allowed to use any other tape drive on

the same controller that TRACE is using. An extré. clock/TTY inter-
face board may be easily added to the system by assigning the extra
board an unused DRT number and plugging the board into the system.

MPE need not be reconfigured to recognize the new DRT,

Section VI-1

VI. CONCLUSIONS

We hope that the reader has gained an appreciation for pro-

gram optimization, especially through resegmentation, We at
DBMS have enjoyed performance improvements of as much as 400%
to 500%, using resegmentation alone. Resegmentation is an easy
first pass to make before getting into the optimizations that require
such things as changing existing code. The software monitoring
packages described in this paper will be released on the contributions
tape and are stored in the group/account "OUR. SYS". If any. system
anomalies occur during the use of TRACE, it should be assumed that
they are attributable to that usage and, therefore, no problem
reports should be submitted to Hewlett- Packard. The appendix
contains a description of the contents of OUR. SYS which will be on the
tape that is distributed to the; users. If there are any questions con-
cerning the software monitoring packages, please direct them to me
at the following address:

Mike Clarkson, Vice President

Data Base Management Systems, Inc.

12100 N, E. 16th Avenue

North Miami, Florida 33161

REFERENCES

1. HP-3000 Users Group Proceedings, May 10, 1974, p. 69,

PROGRAM PERFORMANCE, by Stephen Sontz

APPENDIX

= e et e e e e
PR g R g R R T Tl

e
OO0 =-I0 U Wy

CONTENTS OF GROUP QUR.SYS

SAMPLE
SAMPLES
SAMPLING
SAMPLINS
DRS

DRSS
SYSGEN
M10MOOOB
M11MOO0OB
S10S000B
S115000B
EXINX
ININX
ININY
TRACE
TRACES
TRACERED
TRREDS
NICRSP
NICRSS
ORSP
ORSS
CRTDRP
ORTDRS

<< SOURCE »
“SOURCE»

«SOURCE »
<OBSOLETE»
«PATCH DECK>
<<PATCH DECK >
CSQURCE >

. SQURCE »
«PATCH DECK™>
«PATCH DECK ¥~
“CPATCH DECK >~

&SOURCE »

“XSOURCE >~
«SOURCE '~
.~SOURCE -

. SOURCE ~

SOFTHARE SAMPLING SYSTEM

qarch 7, 1973

Contents

lntroduction L] L] -« » L . . L] . * L]

Hard::are Pequirerients for Sampler

Sampler Operation and Format . . .

. " Setting up the Sampler . ..

The Data Reduction Program .
ACase Study . « « ¢ & ¢ « &

Miscellaneous Comments . .

L]

L]

*

L]

-4
1]
k

- 00 bW N

A. Introduction

The Software Sampling System is a useful tool for measuring the relative
time spent executing various sections of code. The system consists of
three parts:

I. The Sampler interrupts the CPU at a preseiected frequency and records

Il.

111.

on tape the following information for any number of selected code
segments: ;

1. lumber of code segment interrupted.

2.. Relative P in that code segment prior to the interrupt.,

3. hpproximate size of the stack.

A11 user interaction with the sampler is done via the Setup program.
v ‘ '

There is a setup program with provision for initializing the sampler,

selecting segments to be sampled and setting the sampling interval.

A Data _Reduction Program is available to process the data tape. This
program w11t provide the toliowing nistograms:

1. Relative time spent in each segment sampled.
2. Relative activity within selected segments.

. 3. " Size of stack from DS to S for each sample.

[2]

A. Introduction

The Software Sampling System is a useful tool for measuring the relative
time spent executing various sections of code. The system consists of
three parts:

lI

I1.

I11.

The Sampler interrupts the CPU at a preselected frequency and records
on tape the following information for any number of selected code
segments: ;

1. Humber of code segment interrupted.

2. Relative P in that coce segment prior to the interrupt.

3. Approximate size of the stack.

A1) user interaction with the sampler is done via the Setup program.
. ‘ *

There is a setup program with provision for initiatizing the samplew,

selecting segnenis to be sampled and setting the sampling interval.

A Data Reduction Program is available to process the data tape. This
program il provide the toliowing niscograms:

1. Relative time spent in each segment sampied.
2. Relative activity within selected segments.

. 3. Size of stack from DS to S for each sample.

N

g

Hardware Resuirements for Sampler

To run the Sampler in its present form requires the following hardware:

1.

2.

3..

4.

A 3000 System which wil) run MPE and for which the maximum DRI pumber
has been set to 70 greater than required by ahx device.

An extra clock/TTY board with a known distinct device number.

A dedicated tape drive and controller. ° X

An extra terminal from which to run the setup program.

-, T - eskn

c.

.

Sampler Operation and Format

The sampler is an interrupt handler which resides in the upper DRT table
together with its buffer. This interrupt handler is activated by timer
interrupts from the extra clock/TTY interface board.

The sampler then traces stack markers backwards to determine which code
segment was executing prior to the interrupt. This code segment number
is used to index into an internal segmant bit-table which determines

wvhether this segnent's data should be recorded. If the segment has been
selected the contents of its status register is entered in the sampler's

. buffer together with the relative location (within that segment) of the next

instruction to be executed. The relative value of the top of the stack is

also entered and a user stack/interrupt control stack bit is set.

If the buffer is full interrupis are diszbled and the buffer is written
directly onto tape. If constant timing interval has been specified at

Seiup Lime e cowe regisier of the timer is Cicared just prive Lo exit.

However, if the randomized jitter has been specified on the timing interval,
a pseudo-randon number between 0 and 255 is loaded into the count rzgister.
The switch register is used as one of the parareters of the random number
generator to allow the operator to influence the sequence generated.

-

Tape records produced by the sampler are 128 words in lengtn consisting of
16 logical records of 8 words eacn. The contents of each logical record
is as follows:

Word 0. Status word of interrupted procedure.

Hord 1. Relative location of next instruction to be exescuted within that
procedure. ‘ :

Word 2. $-D3 if on interrupt control stack and (DB-S) if on user stack.
Note that bit O indicates ICS/User Stack.

Word 3. Unused at prescnt.

Hord 4. - Record type. Bit 0 is 1 to indicate that the record was producad
by the sanpler. . '

Yords 5, 6, 7. Uruscd al presant,

c3-

Al

.

Setting up the Sampler

Before starting-up MPE ensure that the extra clock/TTY interface board is
inserted in the highest priority polled 1/0 slot. Coolstart MPE and raply -
"Y" to the question "ANY CHANGES?* Vhen the question "HIGHEST DRT MNUMSER

= XX.?" s printed reply with 3 nunber which is 70 greater than the highest

DRT used bg the system. Ho other changes are required. lount a tape fitted
vwith a write ring and selzct unit 0, When the system is up log on and

tRUN SETUP1. The machine replies "TRACER/SAMPLER" and prompts for cormands
with "2". The first conwand to be entered must be "$LOAD" (as described
below} to initialize the sampler after which sa#pler commands may be entered
in any ordar,
Commands specifically affecting the sampler are strings of length less than
7 having "$" as the first character. The second character determines the
command, and following characters are optional. All parameters are in
standard 3000 form ("%" prefix for octal nuwbers).

- -

)
$LOAD <timer device number>, <starting drt numter>
Til> Juads the semplicr LU Lie @i'L Lauie statiing ol ~atar bing Ui
number> (which must be at least one greater than the highest drt
. entry used by the system). The <timer device number> is the device
" number of the extra clock/TTY interface.
r __J.
$TIME <count> <quantum>
This command sets the time betwean completion of onc sample and
start of the naxt.

<quantun> is "U" = microscconds
"M" = milliseconds
or "S" = seconds

<count> 1is an integer less than G4K. The timer is set-up se¢ that
the precision of »awpling interval is better than 0.1%. This coriend
also halts thh sampler if it was running.

SRARD This comtaand introduces a randem jitter to the sapling interval,

The purpose of this jitler is {0 avoid the possibility of the sampline

- intervals hecoming synchronized with the sampled coda. The suitch
-4-

register is used as one of the parameters for the random number »

gencrator. Statistical tests have shoun that #176523 is a good nurber
to set in the switch register. Zero in the switch register resets
the $RAND command. .

$SET <segrent range list>

L]

This command specifies the segments to be sampled. <segment range
Tist> is a list of ranges of segment numbers separated by cormas,
where a range is a segmeni number or first segment nurser/last segment
nurher.*

$CLEAR <segmznt range list>
" This command inhibits saripling for all segments in the ranges of the

<segment range list>*,

$G0 Starts the sampler. (At least a "$LOAD" and a "$TIME® corrmand should

have veun Tssued previousiy.)
$HALT H2lts the sanpler.

The following general commands are also useful.

EOF Urite an end of file ma?k on the tape.
DEBUG Enter debug. -

EXIT Terminate the setup program.

There are various self-explanatory error nessages. However, at present
there is no error che:king on the paramater values of the "SLOAD" comaand,

Since the program runs in privileged mode care must be exercised when
entering the $LOAD comwand to avoid crashing HPE.

*eseguant range list»:: = <seguant range> |<seomant ranga list>, <seorant rovese
<segnant ranteril sasenuent nvsbers o <spement nusbers/<segnent numders
<segrant nusber»i: = any integer betwzen O and 255

-5-

(s
vt

The Data Reduction Progrem

A program is avai]abgﬁ to process the data tape produced by the sampler,
Output is in the form of histograms of segment usage and relative activity
within each segnent. :

The data reduction progrem is activated by the following sequence of
cormands: :

:FILE FTH@9; DEV = LP ; CCTL
:FILE FTHO7; DEY = TAPE; REC = 128, 1, F, BINAR'(NOLAL &L
RUR ~FHREHF TAPSS

The program makes a first pass through the tape, processing all recerds,

if any, produced by the old (now obsolete) trace routine and obtaining
nor«aIizinJ information zbout sampler records. At the end of the Tirst
pass the total number of records on the tape is printed on the lire printer.
Assuming 311 recerds were produced by the sampler “ENTERING DATA REDUCTICH

ENG ¢ At rﬂ“ 14‘- nn‘n‘l—pf’ on tcThnl'T 3‘-_11;\0 gd I-u - ua-"--vl- Ernw mmmmmnda

@ WL Wi b A [et)W L BT TR “ e EeG Yy W uuvnl—--uv

for which an internal h1stogram is desired. Enter these in the frec
format <segrum>, <p interval> follewad by carriage return where <segnums
is the numher of th2 segment and <p interval> is the "width" of the bars
of the nistogram. If <p interval> is zero the _program chouses a bar width
such that the histogram for thet segment will fit on a single page. OF
course, i¥ <p interval: is 1 the histogram will show the number of seaples

' wnlch hit each individual instruction.

Prefix octal numbers with "%". If <segnum> is a valid nusber for a segment

but no samples interrupted that scgment the machine replies "BAD SEGHINT
RUMBER". To terminate the 1isit of segment numbar enter a <segnum> greater
than 235,

A response of "Y' to the quastion “COMPLETE PLOT OF STACKSIZE?" will

product a histegram of the value of $-DB for every sample. This hisiogram

of stacksize consuzas muzh time and paper. and is usually of Yittle injerest.

A second prss through tha tape is then made, after uhich the histograms

requasiad car]1cr arc printed on the Tine printer.. The nuber of the segmurd
-
- -

-u-—

-

§s shown at the top of each histogram. Each bar in an internal histogram
represents the number of sauples which hit the range of code locations
shoun at the left of the bar.' The actual number of samples §s shown at the
right. Bar lengths are normalized separately for each segment to emphasize
the high-usage sections of code within a segment.

The machine then prompts "SEGHENT HISTGGRAH?“'on S$STDOUT. A reply "Y"
will cause a histogram of segrent usage to be printed on the line printer.
This segzent hisfcgram shows tite nuwber of samples which hit each segment.
For each segmant which was sampled at least once a bar appears in the
histogren showing at the left, the segment numoer and, at the right, the
nuber of saiples which hit that segwent. Once again the bar lengths are
normalized so that the longest bar spans the page.

The mackine then prompts “EXIT?" on $STDOUT. A reply “Y" terminatas the
program, whereas "N" rewinds the tape in preparation for repeating the |
second pass. '

F. The Sampling System in Action: A Case Study

This section describes an exaiple of the use of the software sampling
systen to improve the performiance of a specifiz program, namely the data
reduction program described in section E (henceforth referred to as DRS.)

DRS vtas written in Fortran and run originally-on the HP 2100 and DOS-M.
When transferred to HP 3000 Fortran and run under MPE execution time_became
distressingly larce. In an cttempt to {mprove this the sempler was run

 while DRS was executing. The following is a description of the procedure
used. ’

" The system was started up with the extra DRT space (maximum DRT set to 167)
and with the extra clock/TTY interface board (device number £13 = 11)
‘inserted in a pollcd 1/0 stot. Two terminzls were required for the measure-
ment, a running terminal and a sampling terminal. Since the only tape

controller availabie would be required by the sampler it was not possible -
to run DRS with innut from f2re, The utility pwogram FILECODY wine wead 40
copy. a data tape (from a previcus sampling session) to a disc file called
DATAS, and DRS was run using DATAS as the input file.

. o . o }
Before running DRS from the running terminal the folloiring sequence of

cormmands was entered-from the wmzasuring terminal (system output underlinad}:

SRUN SETUP]

TRACFRISAHPLER

2 $LOAD £13, 31
2 $SET 07255
2STIHE 4 M
2 $RAND
(#176523 set in the switch register.)
7 $CLEAR. £107 '
(%107 was segment nusber of the dispatcher.)

At this point tha samplor is cot up to interrupt at 4 millisccond intorvals
with random jitter (i.e. tiiie between sawples is randowly chosen in the range

’»
-8

i~
it
3.75 to 4 milliseconds). Al] segments are set to be sampled except the -

dispatcher (thus no tape wil] be written while the system is paused waiting
.for input).

At this time DRS was started on the running terminal. As soon as DRS
started executing the command '

2 $60

was entered on the measuring termina) to start the sampler. Wnen DRS -
terminated, the sequence of cormands

. 2 $hALT
2 EOF
2 EXIT

was_entered on the measuring terminal to stop the sampler, write an end of
file mark on the tape and then terminate the setup program.

The data tape was then manually rewonnd and DRS was vun with the data tane
. as inbut to produce the histogram of segment activity shown in Figure 1.
This histograr immediately indicates that the Formatter consumzs more than
twice -the CPU time that the actual DRS code does. To determine exactly
vhere in the forimatter this time was spent histograms of activity within
segment 132 were produced (during subsequent repetitions of the second
pass). One such histogram is shown in Figure 2. Checking the high usznga
sections of code suggests that formatter time could be reduced censiderably
by chahgipg some data definitions, and by nodifying the statzirant which
reads from tape (from a do-implied list to an array read}, thereby reducing
the number of calls to the formatter. *

Thase changes were made to DRS and the above measurement procedure wvas
repeated. The resulting histogram of segment usage is shown in Figure 3.
(Hlote that in this meastrament the dispatcher was sampled also.) This
showm that the re]api?e fornatter tima has been reduced to 1zss than onc
quarter of its previous value. In fact total exccution timz of DRS was
reduced 567,

L
it

3.75 to 4 milliseconds). A1l segments are set to be sampled except the
dispatcher (thus no tape wil] be written while the system is paused waiting

.for input).

At this time DRS was started on the running terminal. As soon as DRS
started executing the command '

2 $60

was entered on the measuring terminal to start the sampler. \Vhen DRS
terminated, the sequence of cormands

. 2 $HALT
7 EOF
2 EXIT

was entered on the measuring terminzl to stop the sampler, write an end of
file mark on the tape and then terminate the setup program.

The data tane was then manually rewound and DRS was vun with the data tana

. as input to produce the histogram of segment activity shown in Figure ¥.

This histogram immediately indicates that the Formatter consumzs more than
twice the CPU time that the actual DRS code does. To determine exactly
where in the formatter this time was spent h1stograms of activity within
segrent 132 were produced (during subsequent repetitions of the second
pass). Ore such histogram is shown in Figure 2. Checking the high vsage
sections of code suggests that formatter time could be reduced considerably
by chahgipg soin2 data definitions, and by modifying the statairent which
reads from tape (from a do-implied 1ist to an array read), thereby reducing
the number of calls to the formatter.

These changes were made to DRS and the above measurement procedure vas
repeated. The resulting histogram of segment usage is shown in Figure 3.
(ilote that in this measurament the dispatcher was sampled also.) This
shoxm that the relapive forzatter tims has been reduced to 1zss than one
quarter of its previous value. In fact total exccution timz of DRS was
reduced 567, '

*SYQ JO uols4aA |eurbiao 403 (43yojedsip aul Euipn|oxa) obesn juswbas jo weabosiy | d4nbLd

o
AN
T

LI Mt B B

.ll.llru.— L. 8376628 L. - . et e+ e ——rrm s e i e i e nim e G YA UROGBAGOSRBAUOOROSDONIOEILBGORGUROeavcCLT2A] 222

.:r: su.mmqmm. 20BN ERENS e-ooe.w.cutnontcnttut:un.ttoo-rascn-n..is-osn-!.o..u!.-oeuvtueeceauam-useeoanwenca:os.._:.om oo o202

o uu_ noam. * SLL U I0 . . t..aannu..t?-anb&osn-a-o._wm.-....“. 252

& - - st L X &

22y A £ i

22t . P v ey
— s PR o e P SR 11 ;!
“-.U-ﬂﬂ ' Sl YR I

33° sS4y ! : wafll Prrga
e - 33 E9C L. . ———— e e e) e . @@omeu?ll ans Ty
;. 231 : : b oz,
e3taLt . . _] 5 et W e
———— A3y . — —— S . Lirvnn dorae
n3°2 v S ;" L7 inan o .oee

51 ﬁ : * 5 3 Ml
——— 3M" 18T . i s e : YIS Rt
£ @3 Ce9l ceaanwel’ 3 eadmi
23°0 . . : . 5 A gnares
e e 22 et e - — T = . - S - S £ 3 arzc2
231 * 1 3 SNTme

33438 LTy

—e i * 108, - - eel™] s .
803°ILs) @owe 2" Wi e

. 23°1 a2.a: bl
i I AT EBE TR . i P e el
231 _ GIonra 2222
22°5161 ’ pwobereeC2lii Y23023
2202, - 333233

g3danN
. . ., : . RVYSSCLSTH LN3AS3S
: & % [. ..- . L] °

L
LR]

e
e hd A T e L2 Y e

o4

AR cem e St 1 B Sele e -

-

LR

g e

PR

R T

T S e EREELE S E e e e S S ———————— . et &

HON—w 2 eﬂs mm.c ”.._

”NONﬂ. a‘.uog.. N.-.tm -..
— T2° . i e " W re cT2Fa
23°3Inl F owvcoll 148 Faik

ea*czel . CORONUO R RN E LR OO RUOUYDROREGRRGUDLORE 7D erirces
— 225951 : S i e iy MR OG R .:.enc-..._-auo-ut:sea:s::cuu:ze-:a-o-nn:n-.ooutu.o.mﬂ. In3L5)
23y ’ goners

235 | S

—— T3S _, s i s o i S e D b
2341 . . i . L2222

_) @z L2 : SL5733
I : S52°1L. . - E. : - e wal ££32133
. a3t 11 : ' eun2ra
oruve | osewmealin33Y L1950

— 33tS51C - poRowcavaeGl 200 LCTYa3
et 391 g . . oecoef 3l 503 {10720

a3° * a3 Gnizcl
— 22701 = 2 A griane
33°1 s 2 3 Snl2Ns.

23°C ’ L1231)

———— 225G - i R P e
v I ’ 7 1gii22

3s° s welils

33 e i —— N e e e e e e e = e sl s meas 4 e i esem——. b aim es e mna o9z

: a3ty A o
J23°* L b |

— 03 ITETRSCSS OGS RRAE i SRy e e S S WA S S i A L K arrrerrenimr o et e Sisiss
o1 €%212a

et : il (e

e | v il) . : soPLEe i G i
* gat e, c-..sewacveaaea..:ua_.uusnnn..3:3uannacuovovs!..cuvevanaaounenna.,;c._‘u.:...aen._.u Lo e 41 S
P e oecnnaeoaooe.ocuae...ceoauovuuautzacnn-cc-..o..oacosecencneoannsaneeecctuoncvsaoaaeeceut-onc‘eu:_:.?.n hod (il

—_— 238 e . e s b ow oween % TE o mm r mem eV m wea | e dve B G LIS, watin:
22*32 : 4 T EZi1z23

ay*riz c G TIZTrs

—— TR L e mm e e eme e L P ai ; : GOPOLUBDLDCWBBOLBABUDLL] 3 E1213)
¢ ga*zyit o-v-aauoanaaannuaee:oaouaavnoasacat-o-uaanca_a-onnvoa-a_.oaaatc.:::_eouuscenennenava:uetvuanneuuuuuoaa S 230

5 a1 ’) e el |
— - on"l AR . i . ; DedIlN ugL N
ca*122 ; 7 avesncl el TUT3

[t §] .aueoto.suton-n_caca-ansuvnsoecvnotnos-t-.:::::.u-e...-:esvat-a:naaonuooaateuuncnoe-ooanaaawunvnoeua.E.. o ol

— BD%2 e e : § B SRR VETEEESE BE n oiee mr m ees cecer o o § o
ca*esel i O NON NN IR NORODEOEERARONLODRONDOROBaDaall " " vLYE

238!t .) . BooRdvgaLoe .~ O L

— 3wl - e b e means WesevessdSihe GERG VR Sie 0 5 S Giemees wtetoaset 707 A
2L ! R0 LoDUNOLEWEOLUREE S T 2D, >3

J3*ssce CUONIRILOLOSPOSGODEDE G G000 0000000000 RR0P0NEUIOPINSDIVe00NEDORE00RED LY ol - Zarn

——— 2 i s — .. 4 s . ; gle. bihe il
223° . . i Y223

53 7 cx. Dot S |
———02 s @\il._llilllt e e e Elag 2ian3

g33anN. @ : : Tonae
A AR R 201 LN3wSIS 234 Ave JiIsccs

o o *SL12D 4333003 PAAOJdU] YILM SYG 4G} S5eSn AUBBOS 40 weuboysyy § oundig : .

H\hh.wn 00°*9R0S1 QOWQMuoos-0.ot.ov-nto..ancouotooo-vaotnt-ooann-cnoeactootcoauovaotta.—.-a.;-noeocooesa-ucooatacaacon-._mnnon 0562340
219l 00°t6t6 u B TENNY L L] bbb A e bl Al s A4 a gttt L L L L Ty L e N S C L I L L LD
00-2 GLInty G0ia:g

GGy R . o s g QIlr39 oLoie

6d*¢g Sl ShL s

i 00 gyl weewoessaill39, 35554
00°S&0C . . . o = . e*sCodRRcendnerenaeen 100 L% %)

. 00°2 . 951450 6357400
uu.\\n\._ 00=T%L11 (h&u.hc.kn-ﬁ 00000.0100.0!-000-.-.-#:.r-tettntoctoouvautatono.otoano-oenotto-ooaoeoaoo._-an..mu 19 232030
. 06°2 T617%05 S02rca
fG*0ng2 ’ weenoocoRoecean i TN L0000

. 00°SySy . . . g VPO OPIPONNOROCRSERpODDOSeoec [NTNG SN0 S

e . ot 00°C216 i & T et s crmmee a BRI R G ORI O NN O U R IR OS RO ROUCION00OONONEVROOLE00000es T TLNA0 ST 20
-03°618S] 5 RO RN ORI H NN INNIRROLRRIRLUCRDICeeaS LT L0000

. G6o°¢C 8 . o500 LoLuth
GO°LCET . 5 . T e W e T cemve m e e .. ; vscceass{ENLG0 203622

00°T601 . : 3 . : eevevecdiGld CB3L30

¥ §35)

- d3TRON . A
) " ' o . o .@ TTTTm mTmmmmm e o .ﬁ RSl ST s me . WYHSCLSIH INZAS3S T

Although the formatter time wes reduced it was stil} significant. To
determina whether this could be reduced any furiher histograms.were produced
showing activity within the formatter. Figure 4~3:=:: the default histogram
with ber width of 243 (obtained by entering "%130, 0" when prompted for
segment number of DRS). Clearly most of the formatter time is spent in

the section of code between %430 and %472. To examine this in more detail

a histogram was produced with unit bar width .(by entering "$130, 1" when
prompted for segment number) showing the relative usage of each instruction,
Figure 5-%2::& a portion of this detailed histogram. It was interesting

to note that the instructions in locations 467, 470 and 471 account for
75% of the formatter time and 103 of the total execution time! Examining
the formatter code shows that these instructions comprise the inner loop

of a FOR statement used to fill a buffer with blanks.

Rather than atterpting to modify the formatter, a tape reading routine was
written in SPL using file system instinsics and Tinked into DRS thercby
bypassing the formatter. This version of DES was wore than three Limes
Taster than the originai version. 1Its segrent usage nistogram is snown
in Figure 6. - '

The samﬁ]ing system could doustlessly be used to impreve the performance
of DRS still further-by concentrating now on the program itself and possibly
the file system.

-10-

.{’

00°%S *SL1e 45330UMO04 paAoadul YIL SYJ 404 43IJRWA0) DY ULYIIM A3LALO0Y Y od4nblj CINRTE S57E00
00°0% €25 g £t
0o . 233005 LAzt
00°%9 ' Li2530 =212
0o0°* Y6IF03 217503
00°11 ¢ " 11806 g~22m%
00°t 92I5a) &1ITRY
09° .o £56550 Teg-02
0o0* . 09280 Grasys,
00° . SLR26) 737"
on*t 289263 tpnens
¢i°t . 15550 e avey
00°1 : . . . 925225 23w’
0d°% 192200 174575
0n°9 ; . Glw2n) wz5vry,
00°9 . . €GT233 it
¢o° . . * QIRTRY G777
09°2 ; =728 mLEas
oo* ’ 22205 nagrn-
co* ‘ _ . LEV=03 €000
00°T1 . 1G5 FTLSlL
00° . ' - 14255 15100
0o0* . SI3L1%5 %217
0o0° . £2010) €4,
00" 5 P RFNNG 6T,
0o0° _ €I1516% 72353
00° ZES15% AT A
e . LiS145% Cue L2
0o0° : ' wouing Pt
00°2 : : _ 165159 255 07n
co-st 1 . GecLCo wy2
on°ney _ €12i2% 173
00°S9T1 c . 3 ©edT213G S0 .
0G6°28 ’ _ oG i%Y FFIIL
0n*te ' s eP2ytan mEete =
00°¢ - : : L5010y €1
0d°cotl ’ . ; ewl1515) 227 =,
00°9 - 15160y 2ar.cn
00°s . GRLODYG At 2n
00°R8 _ . . i i) LUt ht 151 .50
03°+201 . o 00eCPPODwRIOEre N5 ST
006°291 - & eonETIEY Cruils
0G"d61TL SRR NCRSRNURUS RV ICERIRRRENEIOERNNCRtRUReIE otoocnttoo‘uan.v‘.oo.*ootooteoovetuooaooocooaooooovoe veweeZlylG) e
6249 L29G20 &85:4:2
00°6 : " . 9wICI0S P00
00°01 ” , 12ZrnanG g=3 "
09°99 ’ . §345L0 #1: .
00") . £12%55%9 [atran
0G* _ ' BSI6LS 645,50
03° GH1%%0 Lo i
0o0° 295038 6.0
YIARWNN 30578,
(Ywitvnval) 0ET LIMN2/93S M03 W7HEHISIH €E€oxnx

« S _

* . - . e ms f
PN *(p 34nByd d40Cw0d) £ 1ALDY 423302004 JO |1EADQ S 04nbig ARETE
oo. * . ,-
ca*t %
on* 3
0a° . aer e
00°1 _ : 3 senirl
no“m doTeanT:
00 . 3 fefls
“w“n .) . . L Lo B
: o,
[A L , : SRGHL) 6ige s
00°6 ’ : ' 9ECATH Fhng
000t _ . . €L375L oFess
a0°8 . : 25329 acaqe
006 . S ©1igsis T4sna
oo* . -) : GESnG0 oesns
oo“ : . . . L25005 par s,
) “u. . . . A 926906 925003
. . S450%5 €aq0 b4
0o0* . . w2605 nan e
0o . : . a ‘ €735 £a37ns
00° . . S ' 22€A50 pruv 1
o< i .- TEGLLL Ten i
Muo CR6% 58 £33
00* - : . . MMMMww
° - * M '” \..0
o0 . . : NI
o0° _ . e frs.-a
°°. W m-u- -
. 0o S NG
0d*02 : . m 3........
00°91 : 154 ¥
06°6 ’ SI1C35 6
03°) GAnLGL &
oc““ . t\h.\u.-. o L -
. G0°E1 . £ FrIacs
’ oc~ . 2, 2rT L%
on1 4 0 1h6,
1 a4 . : GC%LLD nine:
"y 28loT . : Li%R65 pagss
UOLINDBXD gg-¢ e . Qoo Aea o
. . A F V2 Ty H
163 40 ZGl< 69°1 REYAGE i
033t _ _ £125006 £19%73
0302 _ - . Zreaus 226500
oo”mahﬂ ooooooooomo&...vceaotooaooe.c.a.voaaoo.owsot.stcotn!totoeto%tocotco.n.stnto&‘tatonaaooaooonoo-oooovu—spmau L A T
EL1Z aa.ﬂno : voavoandeswcecoar i ullan o nhs
“w-oaom bbb Al S it Ll D N PPy reens
. . Qw0 6, .
o0 . : . . Cyuits amil
. 00°2 - WGt b
0% 2 : SRR
06T * Svais pasin:
002 . T9~0%)- :
ot . Coviis 5
202) “ 252239 :
6o° , IS 3
e omFAwunE:z quewbog ..0' "eaB03SLy SSIIPPY il :
*

— ..lﬁ..-
——dn
———rm e ee s

Y — s — —

.muﬁﬁ.sz..r wo3sAs 3L}y 30a41p bursn syg jo abesn juewbag *g sunbid

ca+33ist -aaaooﬂ;onrtoawoooo-toacottoaoatanaoauenp au..uo..sooao:-ocaceutco.;ccuuoacauvoo-ovaccaaone-vo-naunavg:. i
FYL¥Y] e S WA e e el — e e e e e e . Lo 2TAT RN
co*t . ’ : . _ :) Lot
[F oS- sl
22U e . B ke e e e T U oNslaWex #outoconuscomeponoenill
Q'S : PR
(AR T o) 4 - uvsenuoottvcvatncsoostcooaotntvv-oonanaoaoctotoctncttnooovoe:cauv:..oaraaannuaoooca..aouoo F
pacdl e it U - A 2 Ay) en:
Aarey a~l
N -4 . . WP O W eanonocsnuboasnerlld
wmw.lm.wn . o ——— - e e - INIincy s tbttt.&ﬁotooutocoeoou:“mo“
fﬂo (2 X 222 31 X2 20T) ‘ﬁ.“‘ﬂ‘&‘ﬁ‘ﬂ’&"tﬂﬂ.‘U‘OQGO’00.00.uﬂ. ‘e
uu.uqo NLIu 2o Nt eenn M AN
SotiIge . ——- — Tt e e L g tnoofveuos&oostooeﬁ.—t#ttcto..aooeo....c._-..un vl
.u.m. T H wiand Ensnra
oot AL RBBR
B e ——— e e e . - ———— e e e (g2
\-..ﬂ.ﬂ B . b h.“.l-a.l.\.-
2a2 L2 AR
o] o B U St emmmm che e e e ———— - v r— epsevesesatll A0
HIAAN & 938
————— e em e aeii - ——— meeme s mma mih e el ATUINLISTA 12

*

T IR]
.
oty
+Tac,
ELE T - P IR

L)
s

PR
T4 e et t4
. L, S
L
R
I

]
L]

LR - I B

-0 *a " b I ‘.
RO

s,

Ca P ln ") tav, 0, ¢,

I 2
.

le
R R,

K
3

4,
sl

4
wi
(R}

B

Terry tempns g b

G.

Miscellanzous Cemments

It ‘must be appreciated that the sampler does disturb the system. At least
the tirer interrupt will cause an extra dispatch if the CPU is operating on
the user stack. If the sampling interval is made too small the sampler
might be measuring the effects of its own perturbations. A sampling intarval
of greater than 3 milliseconds has been found'to yield accurate measurements.
However, when measuring events of short duration shorter sﬁhpling intervals
may be necessary. In such cases it is important that the sampler does not

“interrupt the dispatch which it causes. To prevent this the sampling

interval should never be less than 350 microseconds. If the sampler does
interrupt its own dispatch the CPU will be locked up in an infinite loop.
To terminate this loop the sampler can be manually disabled by setting bit
0 to 1 in the word at absolute location

4* <starting drt number> +3.

The samplirg interval selected by means of the $TIME command is the tire

hatuinan an-l- -Fham *I\q rﬂrn‘ﬂnn -w\r? +kn e e nmciAand -nn'l-n«aun'lo ua#nvwnnn tom s
-ty At us B G _---t“- * - r LEE Y J ------

sampler. Thus the time spent in the sampler itself is excluded and the

only perturbation is the possible extra dispatch (zpproximately 300 microseconds).
Howevef, relative timing of other I/0 operations is disturbed. When

measuring programs with high I/0 activity longer sampling intervals are
recommenced.

Overhead vhen sampling all segments at 3 millisecond 1nterva1s causes
approximately 20% degradation in throughput.

In order to measure act1v1ty in segment zero (external iaterrupis) it is
necessary to ensure that the extra clock/TTY interface is polled for highest
priority. This will also guarantee the precision of the sampling interval.
However, unless preci.e sanpling intervals are spec1f1cal]y desired it is
strongly reconmenced that the randemizing option (3RAND) be used. Ehen

‘using constant sawpling intervals the resultant histograws have been seen

to exhibit spurious spikes due to synchronization of the saripler and the
seapled program. The randorizing option has produced reliable date in &t
cases, '

«11-

The sampling system is not particu]ariy elegant and many improvements could
be made in its operation. However it is a useful tool for determining
which sections of code consume the most processing time. These results
are sometimes surprising even to the programuer who wrote the code. Opti-
mization of software can certainly be accelerated if it is possible to
identify the "10% of code which consumes 90% of CPU time". |

Caft

May 1, 1973

" Measurement Distribution weseet Modifications to The Software Sahp]ing
System '

The original sampler used the switch régister to provide a parameter to the
random number generator for the randomized timing interval option. To free
the switch register this paramter is now fixed and resides in the sampler’s
data area. A "S$FIX" command has been added to reset the "$RAND" command.

. The default is a constant sampling interval; “$RAND" introduces randomized
jJitter and "$FIX" resets the sampling interval to be constant.

The magnitude of the randomized jitter has beeﬁ doubled by using a random number
- between 0 and 511 to load the count register of the extra clock/TTY board. This
requires that randomization should not be used for §§Ep1ing intervals less than
600 microseconds. However, the greater randomness of the samples improves the

validity of results. For most measurements a sampling interval of 11 milliseconds

- with randomized jitter will produce reliable results. In this case the sampling
interval will vary randomly from 6 te 11 milliseconds ensuring that dispatches
caused by the sampler are not sampled.

To conserve tape and reduce the overhead caused by the sampier the output record
format has been medified. Two word records are now produced with a blocking
factor of 64. The first word of each record contains the status regiSter of the
interrupted segment and the second word contains its P register. The data re-
duction program has been modified to handle the new format. Of course, stack
size statistics are no longer available but could be resurrected if necessary.

The new sampler can be set up using the pragram SETUPS and the associated data .
reduction program is TAPE9.

Overhead caused by sampling all segments with a randomized sampling interval of
11 milliseconds is 7%. The Central Limit Theorem predicts that 25,000 samples
produce results accurate to 1% of total number of samplés with 99.9% confidence.
Indeed, experimenrts have shown that segment histograms produced by the sampler

© agree to this extent with measurements made using the SUM hardware monitor.
These figures do not account for artifacts caused by disabling interrupts.

It should be noted that if interrupts are enabled just prior to an exit the

- sampler can only interrupt after the exit instruction has executed. This can
produce spikes in the histograms of segments calling procedures which disable
interrupts. The aberration will be avoided 1f there is at least one instruction
between the enable and the exit.

e ;&;lﬁééﬁfi lloe ’ Zfﬁpﬁé’ FrfoT. pe = THE f’Etz.t=L¥} OhF - NoeABEe

s

[==—a—0 ==

Mt May 14, 1974
swect - Program Sampling

f

The 3000 System Section has a program, SAMPLER, which determines relative time
spent in the various portions of a program. SAMPLER is very useful in
optimizing program code by determining what sections of a program is most

heavily used. Unfortunately SAMPLER requires hardware and software modi i '
to a 3000 system to run, A new version of SAMPLER called SANPIE s now available

which requires no hardware changes and only a minimal software change. Specific-
ally about seven lines of SPL code must be added to procedure TIPC of EXIN. Some
capabilities have been lost in SAMPLE that was available in SAMPLER. However

the lost capabilities only affect users who are sampling system code segments.

For user code segments SAMPLE is fully as capable as SAMPLER. SAMPLE is available
for internal use from the 3000 System Section. Awrite up on SAMPLE has been
enclosed for evaluation.

DL/kg

Mt

INTRODUCTION

SAMPLER_is.a package of three programs for use in measuring the relative time
spént within various portions of a program. The three programs are:

SAMPLE which the user runs to initiate the sampling of the program code,
SAMPLING which performs the actual sampling and 1
ORS which reduces the data generated by SAMPLING to a user readable form.

OPERATING INSTRUCTIONS

1. Load the program to be sampled and obtain the CST numbers of the segments
to be sampled.

2. .Run SAMPLE. .
3. Run DRS to reduce the data tape created by SAMPLE.

SAMPLE writes the sample data on a file called SAMTAPE which is assumed to be
a magnetic tape but can be a disk file. DRS reads the sample data from a file
called DRSTAPE, also assumed to be a magnetic tape and lists the output on a file
called DRSLIST, assumed to be a line printer. ' - ‘ '

MESSAGES
MACHINE ID? From SAMPLING. Type in name of 3000 that test is being run on.
SAMPLE ID? From SAMPLINGl Type in identification for sample run.

SAMPLING INTERVAL = 50 MS? From SAMPLING. Type "Y" if a sampling interval of

50 milliseconds is to be used, else type the number of milliseconds between samples.
The minimum interval is 10 milliseconds and the maximum interval is 1000 milli-
seconds. The shorter the interval the greater the number of samples that will

be obtained in a given time span. The Targer the number of samples, the more

valid the results will be. However a short sampling interval will result in
considerable degradation of system performance. At 10 milliseconds the system

can be expected to run 70 percent slower, at 50 milliseconds degradation will

be about 15 percent. A minimum of 7 percent degradation is to be expected.

CST #'S? From SAMPLING. Type in a list of CST numbers of segments to be sampled.
The numbers are assumed to be octal and are typed in the following format

<CST 1ist>::=<number range>|

<number range>,<CST list
<number range>::=<CST number> | .
<CST number 1>/<CST number 2>

<CST number 1> should be less than <CST number 2> and specifies that all segments
with CST numbers between <CST number 1> and <CST number 2> inclusive is to be
sampled. <CST list> can be continued onto a second line by .typing an &.

Example:
231, 2407243, &
277

Indicates that segments 231, 240, 241, 242, 243 and 277 are to be sampled.

PRINT -CSTAB(*}? From SAMPLING. Type "Y" to get a listing of CST numbers that
will be sampled else hit carriage return.

TYPE "STOP' TO STOP: From SAMPLE. Type "STOP" at any time to stop sampling.

UNABLE TO CREATE SAMPLING PROGRAM From SAMPLE.
Possible causes are
1. SAMPLE do not have PH capability.

2. User or account does not have AS priority,

3. SAMPLING exists in another groué‘pr account,

. START = <CST number 1> > STOP = <CST number 2>.
From SAMPLING. Self-explanatory. If this error occurs, check CSTAB(*) afterwards.

% BAD NUMBER * From SAMPLING. A bad CST number was inputed. This message
will be preceded by <CST 1ist> up to and including the errant number but not
beyond. Most likely cause is typing in decimal CST numbers or extraneous %
preceding CST numbers. If this error occurs, check CSTAB(*) afterwards.

UNABLE TO OPEN SAMTAPE. From SAMPLING. wil1_be followed by file error information.
UNABLE TO WRITE HEADER From SAMPLING. Will be followed by file erfor information,

QUIT P=11 This is a MPE message. SAMPLING QUITs with P=11 when an error occurs
on SAMTAPE. .

DRS OUTPUT

DRS prints: _
1. A header page which is self-explanatory.

2. A summéhy histogram showing relative time spent in each segment that was
sampled. '

3. Detail histograms of each segment that was sampled.

The summary histogram consists of:
1. The CST wnumber of the segment,
2. The histogram.

3. The number of samples taken from the segment, percentage of total samples
the numbers represents and cumulative percentages.

The user will be prompted for how detail he wants the detail histograms to be.
The prompt is ‘ - :

SEG # <CST number> (<number of samples>SAMPLES)?
Hit carriage return to omit the histogram of this segment. Type zero to get a
one page histogram. DRS will scale the histogram to fit in one page. Type an.

integer n to get a histogram where the interval are n viords wide. The detail
histograms consists of: .

1. Segment CST number.

2. Two PB relative addresses in octal specifying the beginning and end of each
interval. : .

3. The hisiogram. i
4. The number of samples in the interval.

5. The percentage the number is of the total number of samples for this
segment. :

6. Cumulate percentage.

DRS contains a restart facility and will ask the user if he wishes to restart.’
Type "Y" or “N" as desired. :

NOTES:

SAMPLE and SAMPLING require PH and PN capability.
— e _ e ———a
SAMPLING requires ASﬂprjorjty.

T S —

-k

AUTOMATIC. PROGRAM RESEGMENTATION

L L —————————————— . ————]

oste: February 1, 1974

soccr. Automatic Program Resegmentation on the
HP 3000

A new performance enhancement tool has been developed. This tool provides for
the resegmentation of programs based on data gathered under actual program
operation. The resegmentation system will be discussed first, followed by a
case study. '

The resegmentation system consists of three programs, and utilizes the segment
trace facility to gather'the data necessary for resegmentation. See Figure 1
for an overall view of the operation. Only two items are needed to start the
process. These are a USL file of the program requiring resegmentation, and an
adequate test case to exercise the program when segment trace is performed,

The first program (NICRSP) takes the USL file and resegments it such that no
procedure in a segment calls any other procedure in that segment. This elim-
ination of internal segment calls is necessary for segment trace since internal
procedure calls cannot be traced. The resultant USL file is then prepared into
a program file. The program file is run and the segment trace data gathered.
Then this USL file and the trace tape are input to program two (ORTDRP). This
program reduces the :race data into a usable form for the third program And
puts the data in a disk file. Finally, the resegmentation program is run (ORSP)
using the file built by program two and the USL file. The output is the re- .
segmented USL file, :

It is a good idea to use a copy of the USL for resegmentation. Then the
original can be kept in case another resegmentation is desired with a different

segment size. The max i mur segment size is kept in DB+@ of both ‘program one
and three. This location may be modified by calling debug when the program
is started. This may be done by startiné the program at its secondary entry
point DBG. Note that program's one and three require privileged mode and
process handling capability. Another requirement is that when the program is
traced, the segment numbers are assigned in a linear order. This may be
verified by running the program with the LMAP option. This assignment order
can be insured. by starting immediately after cold load.

e

/ S‘\ME F\Lé —\

NO INTERNAL
PROCEDURE CALLS

usL PROGRAM | usL
FILE > ONE > | Eite
(NICRSP)
\'4
PREPARE P
Ty
PROGRAM SEGMENT NN
FILE ~"2 TTRace
. PROGRAM
REI;!IEEENCE PR Sy
(ORTDRP)
PROGRAM ust
THREE &——| FILE
(ORS.P) <
?‘\‘2 |
USL Wwo
FILE <« F
Figure 1 .

Rese yientation Procedure

FCOPY

" A Case Study - COBOL . |
The COBOL compiler was chosen as a test case because it is one of the largest
subsystems and its authors had already carefully- segmented the code by hand.
Thus, it would test the program's ability to resegment a large system,.and the
results could be directly compared to the original compiler, Four different
tests were conducted. The first test consisted of resegmenting the compiler
based on the results of tracing one cbmpi]e. This same compile was then tested
against the original compiler. The following three tests were conducted on a
version of the compilation of nine different source files. Tests were made on three
over the compile of nine different source files. Tests were made on three -
modes of operation; stand-alone, multiprogramming against itself (code sharing)
and multiprogramming against another large subsystem. The results of each
test are shown in tables one through four,

Each test was conducted on four different maximum segment sizes; one thousand
through four thousand word segments in multiples of one thousand words.

PROGRAM Number of Elapsed Code Segment
Segments Time Faults .
€0BOL 28 147 587
4K Reseg. 20 206 1423
3K Reseg. 28 195 1376
2K Reseg. 39 _ 162 - 949
1K Reseg. 56 132 451

Table 1 - One program traced & run alone

PROGRAM Number of Elapsed Code Segment
Segments Time Faults
CoBOL 28 _ 336 1069
4K Resegq. 23 484 2874
3K Reseg. 28 342 992
2K Reseg. 34 397 2078
1K Reseg. 52 325 859

Table 2 - Cobol run alone (4 Compiles)

PROGRAM Elapsed CPU Run Code Segment
Time Time Faults

. COBOL 197 83 1915

4K Reseg. 178 77 1414

3K Reseg. 167 : 73 1450

2K Reseg. 165 ra 1680

1K Reseg 153 n 1631

Table 3 ~ Cobol multiprogrammed against itself (one compile)

!

PROGRAM - Elapsed CPU Run Code Segment
Time Time Faults

C0BOL 206 85 1807

4K Reseg. 225 82 . 2023

3K Reseg. 189 80 1589

2K Reseg. 201 83 1857

1K Reseg. 225 94 - 2321

Table 4 - Cobol multiprogrammed against another large subsystem
(one compile) '

An examination of the tables shows that programmatic resegmentation can do
about as well as a human. Different segment sizes yield much different results,
SO some experimentation must be done to pick a good segment size. For this
experiment, the 3K segment size appears to be about the best of the four sizes
used.

SEGMENT TRACE SYSTEM

Segment Trace System-

The Secment Trace System (STS) uses the hardwara traqe" facility to
collact czata pertaininc to processes at the tirm of intercegrant transfors
caused by PCAL's and ZXIT's. Sufficient information is avaijable to Gataer
statistics on both codo and d2ta of procasses, or 10 examine 2n individuz)
segrent. Data are ccllected on unit & of the system magnstic tape unit
(DRT 6) and redured o7fiine on the 3950 by & dats reduction program.
Because of the amount of code executes for each itvensfer iraced and the
non-overlepped tape 1/0, tracing large numbers of seqients oan cause sovare
System performznce dagradation. The trace segment has bzen mide an integral
part of the operating system to reduce the prooley of incorporating it afier
each KPE vpdate and to make it available cn every davelopmiant system,

CONSTITUENTS OF STS

STS consists of the following three software components:

1. An FPE system containing a special version of the IRIN code segment
and a 300 word data segment.

2. A program to control tie tracing proceés (tcp).

3. A data reducticn program.

STS is inert when no trace bit4 are set and should cause no noticeable
loss of system performence.

USTHG STS

CoLd
1. &= load a copy of MPE containing the trace segmant.
2. Ready a mag tape on unit 9.

3. Run ths TCP program from a session. Use the command sequence {explained in

dotai] nn rann 73
retal] on pace L.

ity ' GOk Uri

SET : set trace bits

RUN : tracing begins
STGP tracing ceases
CLEAR - Clear trace bits
EOF writes EOF O TAPE
EXIT : terminates TCP

4. Rewind and dismount tape.

5. Process tape using reduction program.
STS - TRACE

Seguent trace dat: are collected by a segmeni added to segwzni INTH
in MPE. This segmeat 1s called from the absence irap segment (%14) and
the trace *r2n seonent (316) uhen these secnents have detarinined that tracing

is to ba fene. The irace irep seguent processes the Break and Control -
Y Tecturas of @ scesion, and these will nre-orpt 2 segmant trace, To aid
unders banding of the capebilities and limitations of trace, a description
of the hawrdsare treae featwre Tollows,

+1=

A procedure call to a segment will cause a trap to the trace segment >
if bit 2 of the first word of that segment's CST entry is set to one and
bit 0 is not set to one (absence). '

[-trace bit

AlH Length

T“

P B Address

Figure 1

CST Entry

Trace and absence traps due to PCAL's are identical in their effect

on the stack.

Q-
S =

X

AP

STATUS

8 Q

X -

AP= -1

STATUS

AQ =4

The result is two stack markers and an external label.

- return marker for calling segiiant

[dummy rcturn marker for called
(" segment created by PCAL

EXTERRAL LADCL

" Figure 2 - Stack After FCAL Trace or Absense Trap

B
¥

-
2

U

The external label is a copy of the one referenced by the PCAL in the
calling segrﬂnt. With this label, the trace routine can calculate the
correct delta P in the dusiy marker to enter the called segment.

An EXIT-trace occurs if bit 0 of delta P in the return marker is a one
and an EXIT instruction is executed using that marker. The marker is left
on the stack and control is passed to the trace trap segment. The value M

fron the
' f'r

x-
bito=1 - AP

STATUS
8 Q

a l

| .
L ° }

Figure 3 -~ Stack After EXIT Trace Trap

-

EXIT H of the called secment is pushed on the stack so the trace trap
processor can XEQ the correct EXIT H off the stack at the cormletion of

the trace process. The trace routine must reset gelta P to the correct
value before the DXIT is executed. Currently, bit 1 of delta P determines
if it is a trace trap (bit 1=1) or a break trap and the Trace Segment (%16)
takes the appropriate action. ‘

The hardware trace facility has some limitations. PCAL's and EXIT's
within a segnent cannot be traced, nor can interrupts be traced. Anothor
inportant exception is a PCAL of a segmant to itself via an external label.
The PCAL can be traced, but 142 corresponding EXIT cannot. The trace szomnent
will supress tracing such EXIT's.

>

vhere

The trace data collection segment works as follows. Hhen the trace
seguent is called, the trace opt%ons vord in the system global arca (SYSPC +
245)(figure 4) is checked. If.bit 120 then the trace segment will exit to the
caller with condition code set to less than. This means that no tracing is .
being done. If bit' 2 = P, the trace request will exit without collecting
any data. This bit is used to start and-stop the physical collection of
data. If bit 3 = 1 and the trace was from a PCAL, delta P of the return
segment will be set so the corresponding EXIT can be traced if a segment
is not calling itself via an external label. , If the Clock DRT is non-zero,

timing measuremants will be nade.

KORD O
1

s W N

10
1

~
I

=
fl

A = Absence - the call for this record came from the absence trap.
T = extra clock being used.

c 1 2 3 4 5

15

RITI|A}lT10]C

PIN

LABEL (PCAL) or N (EXIT)

CALLER STATUS

. CALLER DELTA P

STACK DB (Q1 - 4)

ng

DL

Q.

Z

LT- T I -

STACK DST <CPCB (2)>

EXTRA DST <CPCB (3)>

TIME

= Record Type §

1

Trace Record
INFORMATI0: RECORD

"

previsus record.

0 = timer overflow bit (186th bit).
C = timer carvy bit (17th bit).

Figure 4 - Trace Record Foruat

e

Interrupt Bit - on interrupt occurred betwesn this record and the

>

where

SYSDB + 245 -

SYSDB + 246

0 1 2 3 8 15
plTiAjcC | Clock paT.

SYSDB relative data segment pointer

D = dispatch bit (set to one each time the dispatcher is executed)
T = trace bit (set to one while tracing is active)

A = arm bit (if this bit is a one, trace trep will be processed, else they
will be ignored) -

E = exit bit (if this bit is a one, the trace processor will set the EXIT
marker to invoke a trace trap each time a PCAL trace is processed)

Figure 5 - Trace Control Format in System Global Area

0 Record Index
1 Record Ceunt
2 | Record Limit
3 S10 PRCS INDEX —I
-4 MAG TLPE S10 <
13 PROGARLM
14
95 Record 1 o G
) Record N .

Figure 6 - Trace Data Segment Format

LRI T

After the options check, the trace tape record is built., Yord 9
contains -6 bits of status information and the prdhess jdentification number
as‘shown in Figure 4. Word 1 contains the label if a PCAL is traced or N
if an EXIT H is traced. Mords 2 and 3 contain the status and delta P as
they appear in the calling segment stack marker. Hord 4 contains the current
process stack DB located in Q1 - 4. Words 5 through 8 contain the values
of the process stack registers. Words 9 and 10 centain the stack DST and
extra data segmant DST located in the current process control block. If
timing measurements are being made, wotd 11 will contain a current tine
stamp.

~ An extra clock board provides the time base for timing measurements.
The clock is read at the beginning of each trace, and this value is loaded

‘back into the clock at the completion of the trace, so that the trace

overhead is removed from the measurement. The LR = CR and LR = CR overflow
bits of the clock are used to extend the clock period to 18 bits instezd

of the i6 bils availabiv in ihe clock countiing regisler. AL a LEN Wicio3ECongd
counting interval, 1.9 seconds of time can elapse before m2asuremant overflow
occurs. This cannot happen since tima of day updates occur onca each

second in MPE and timing analysis will not bz dome through interrupts.

Trace Control Progran

The Trace Control Program (TCP) provides the user with a converient
means of setting and clearing trace bits, and initializing and controlling
the trace operaticn. TCP must run in priviledged rode so that user account
capability is needgg. -__ -

—

The commands to TCP may be input from a terminal (TCP prompts with a
"7") or card recader, depending on the woda (sessicn or‘joh). Commands
are entered ene per line (card). Terminal input is terminated with a
carriage return, Sore examwmles of ceemand syntax are shown in Figura 7.

A blank or comma may be used as a data item separator, but blanks are
otherwise ignored. Humbers may be either octal or decimal, with a "%"
character preceding an octal number. A "/" betwean two numbers indicates
a range.

WIT 0 O

TRACE 45, 3271/ %102
RUN

sT0P ‘

CLEAR %20/130

EXIT
Figure 7 - T8C Command Examples

TBC features a comprehensive set of diagnostics. A1l but the following
two abort the current commzand: ')

RAD (ST WIKRER X (X <%20 or too large)
UHASSIGHED CST X (This CST not used)
If,tﬁgfgzoccurs within & <range>, execution of the <range> continues.
15 .

The TBC program itself is divided into three paris, which are the
scanner, the interpreter, and the main program. The scanner picks "tokens™
from the current line, leaving the ASCII representation in the byte array
TOKEH, a type indicator in T, and the value, if aumeric,. in V. The main
procedurc of the scanncr is NEXT. A token is defined to be a corma (",")

a slash("/"), a carriage return, or a string of alphamerics not including
blanks, comias, slashas, or carriage retﬁrns.

The main program fTetches new lines, requests the first token (by
calling BELXT) and attempts to intarpret it as a conmand. If this is success-
ful, control passes to a procedure in the internreter which execvtes the
coimand.

.

One can add new commands simply by adding an equate for the "type" of
the command, enlarging the case statement in the main program,'and inserting
an IF clause in procedure CGMHAID to detect it. An actual procedure
nust be put in the interpreter section to perform the actual execution.

<cormand>:: = TRACE <t list> |
CLEAR <t list> |
SHOY <addr> |
STORE <addr>, <vajue> |
INIT <drt> |
RUN |
STOP |
EOF |
EXIT

<T list>:: = <t element>, <t list>

<U eiement>:: = <pump> j<range>

<range>:: = <jower bound>l<upper bound>
<lower bound>:: = <num>

<ypper bounds:: = <pum>

<addir>:: = <nump>
<value>:: = <pum>
<drt>:: = <num>

<nui>:: = Octal nurber < 17777
(ieading 0's ignored)

Figure 8 - TBC Coumand Syntex

TRACE/CLEAR <t list>

Trace bils are set/clearcd in CST entrias described by <t list>, If
& <range> is specified, the trace bits in <lower bound> througch <upper
bound> inclusive are affected. <lower bound> nmust be < <upper bound>.

T <drt>
. A1l necessary initislization is performed, <drt> is the DRT index
of the extra clock board. This cormand must be issued before any

RUN's.
RUN .
Tracing beings.
STOP _
Tracing ceases; it can be restarted with a RUM.
EOF)
An end-of-file mark is written on the trace tape.
EXIT

TBS terminates (cannot be tracing when this command is executed.

fiyure 5 - 75¢ Command Semaniics

Pata Reduction Procram

The data reduction program will be cepable of presenting the data

~either by process or by code segments. The segment statistics should Le

useful for analyzing library routines and othar scgments where oniy information
about ihose particular seguents are of interest. Process statistics can

be used to examine both the code and data behavior of software sub-

systems.

Segirent statistics include both weasuremants of tine and statistics
concerning information about the'segments wivich call the traced scoment,
Timing data includes the tote) time spent in the segment, the average
time and standard deviation of a1l the calls to that secwent. The calls
will be broken down by STT numbers, calling segarent nusbers, and process
numbers.

Process statistics will exanine the minimum and maximum stack size;
the nusber of times the stack is added to; the size of the user's own area,
and how many times tnat size is changed. Extra data segment use can also
be determined. The flow of program control can be shown by showing the
segments used, who called them, and how many times they were called.

-

S T AT I TR SSTIT T SIS

May 7, 1973 .
STS - TRACE Data Reduction Program

Crmmmnt Twama Padka RNadimdd
e R R T L Y

A program is available tc process the tape produced by the STS-TRACE program.
(For a description of STS-TRACE, consult prior memo dated iHarch 20, 1973.)
Output is in the form of entry, caller, and timing statistics for each segment
traced.

The data reduction program file name is TRACERED and is activated using the
MPE Run command. The program may be run from batch ovr interactive access. If
interactive access is used, the program prompts with a "?7. Currently the pro-
gram will recognize three commands, as shown:

SEGHENT - causes the program to prcocess a trace tape and produce segment
statistics. This command. may be executed once only per line.

CALL - in addition to' the segment statistics. above, this option causes the
processing of a trace tase L0 include the caller statistics, and the caller
statistics to be incluced in the output. ‘Mote that this cosmmand must be

e il ses . ow

PAPMEAT 4 4 ik iy et SN mtEs L b ae e i eese ramey w e

issued each time the segment command is issued if caller statistics are desired.

v

"

EXIT - causes the reduction p}ogram to terminate after other commands included
in this line have been executed. ’

The commands may be input in any order. Any non-alpha character may be used
for delimiting commands. Any alpha input other than the above will cause an
error message to be emitted, but will dtherwise be ignored. After input, the
commands will be executed and, if no EXIT command was included, will request.
the next command. '

A1l statistical output from the program is directed to the line printer. The
following is an explanation of each column of data. Please refer to Fig. 1.

The first eleven columns comprise the called segment statistics. The first

column is a three digit octal segment number. The second column is the total
PCAL entries to that segment. '

The thivd columh Is Lhe occurrance of PCAL absences uniy. EXIT absences cannot
be traced, and therefore cannot be displayed. The fourth column is absences as
a percentage of the total entries. Column 5 is a three digit octal segment trans-
fer table (STT) entry number. Column 6 is the total calls to that STT. Column

7 is STT entries as a percentage of the total entries. Column 8 is the number

of timed STT entries. This is the total number of STT entries on which it was
possible to gather timing information. Column 9 is the number of timed entries

as a percentage of the total STT entry count. Column 10 is the average time per
STT call in miI]iseconas with all trace overhead removed. Note that this time is
the time spent in this segment less the time Spent in other segments which vere
being traced and were called by this segment. Column 11 is the standard deviation
of the time per call in milliseconds. '

Columns twelve tﬁrough sixteen comprise the caller statistics. Columns twelve
through fourteen contain the caller ID, that is the process identification number,
the segment number and delta P value of the calling segment. A1l three are rep-
resented in octal. Col'mn fifteen is the total calls made to this segment by

the caller, and Column sixtesn is the number of calls as a percentage of the STT
entries.

S AP ERNG TLE O SR WL SR RS e i i e T Iy e b as 0 e g Bt e e .-

TR N

Segment Trace In Action - A Case Study ‘ .

This section describes an example of the use of the software trace system. A
calibration program has been written in order to calibrate the constants in the

- trace data reduction program which removes ‘the trac1ng overhead from segment

timings. All system output is underlined.

First, the trace control program is brought up and initialized.

:RUN TRACE

HP3000 TRACE CONTROL PROGRAM

2 INIT 15
Next, the calibration program is started with the LMAP option to find out which
segments the program would use. The segments used were %123 through %137. The

calibration program requests the number of passes to make, and at this point,
the following trace cormands are issued.

2 TRACE %123/2137
2 RUN

Now trace is ready to operate, so 100 is issued to the calibration program. Trac-
ing proceeds until the calibration program has run to completion. Next, the follow-
ing commands are given to the trace control program.

.

2 STOP ' . .

2 EOF
2 EXIT

“'This terminates the program execution. Note that the CLEAR command was not necessary

since the CST entries were deallocated when the calibration program terminated,

After the trace operation is complete, the data is reduced. Two reductions were
made with and without caller 'statistics are shown in Figures 2 and 3.

S A e m s sman - & s e+ es e

: RUN TRACERED . . .

HP3000 TRACE TAPE_REDUCTION- PROGRAM
2 SEGHENT
2, SEGMENT CALL EXIT

Note that the measured time for an EXIT only is .02 milliseconds are shown in
segments %131, %132, and %137; whereas a PCAL, EXIT pair is .05 milliseconds
as shown in segments %124, %125, %133, and %134. These are approximate since
an exit takes 21.7 microseconds, and both a PCAL and EXIT take 50.4 micro-
seconds. They are not in exact agreement since the trace system only receives
one clock count each 10 microseconds. Therefore the error could be as large
as 10 microseconds for each segment traced.

R T P T . M TR At e 4T B aR s SR R G Rs B ARAHERPIIY T LR S e A A .« S " 5 A ——— A e A

. —— W 8 e ————— 4 —— - — 2 e s mrem e M W s mE . e o e e e m e e o E - - -

B T ~

...I.l. : s) i *
. »

~8

e, — e e Jo
' F]

- : - o) e

: I

S - : — s : J
: “

= - L
Y I it

L] L]

- - — - s s w o 2 "

T - * L1

. o

0°05 T002™ 20000 9€T L20 T e . u

i 0°05 002 toono 9£t 120 o0° 20° 2°16 60¢ 0°00T 00¢ too €. 1 00 et |
. —— T —— . g A an . —— . - - ———— —— eow - eemew - .- - — - u
0*0s ‘o0l 20000 SF1 L20 : "

0°0S 00T 10000 s£T L20 o00° go° s*18 €91 0°00T 002 to0 s* 1 002 9tT

= n
TTTT T 00001 001 TTTT T 10000 wE1 2200 T000 7T @00 T T acte 19 T TTTTToeg0t 00t T T 100 00T Tont seli™ 1
5

——e. 0°000 00T 00RO ERT L2000 ____§0° ___0°19 19 ____ 0°001 00T ___ 100 0°T__ X 001 i
- . n

0°00T 00t © 0£000 €21 L20° 00° s0° 0°65 4§ 0°00T 00T 00 0°T X - oot s €50

TTTTTT U Mer00n U TTTT T T L1000 €21 2207700 T T 200 T 000t 1T T 0e001 T T 100 T 000017 v T
0°00T T _ 10000 OFT £20__00___ 20" ___0%00T T__ ___ 0%0T T___ ' * t0o__ 0%01 1 ({4

h

0°00T 1 02000 €21 220 on° 00 0° 0 0°000 T . 100" 0°00T T 1 1153 S

L 1]

TTTTTTTTT0%001 66 T T 710000 92T L2077 000 7T 900 U009 TS TTTTTTTOS00T 66T T T 100 T 0T 66 hm.ﬂllv.
) . . ; % '

—_—— ___G"pot 66 10000 S?1 hmain.oa_..il.......-ma.nlll..o.mv. Na,..!::l.... 00001 66 s 0°% 1 ’ LN 928 &
. L]

0°00T 66 10000 2T 220 00° G0°* 6°63 S8 0°001 66 100 o0°T Y . 66 szt

L]

TOUTTTTTTI0000T. 66 TTTTT 10000 €21 2200700077760 T 8019 T8 T T 00001 46 100 00T a6 mmﬁqu.
- : T

.

; : b
YT T UT3MSS S7TWD T diN30 935 NI TD/1A3AS TO/3WIL 31155 *INI OINIL I0ISE *IND AWING LIS *SHVE SIONISHV™ *Llmwd ANINI 935

et

: ‘ . WVYHOOUHA NOTLONAIN VIVO 39VdHl ININO3S 000€HH T 39vd

! |) . M) |

. ?

. N 2

. . A .W DAN ©O -h_,) .

-— — - : - s *

i i

3 ——— B

5 . : i

. : 1,

] - #

- —— - —— — -t e e mmama s u .. _“
A s o o)

: § . ~ e 00 20° 2°26 6BE_ _____ 0°00T 00% _ Too _€° __ 1 00y et ",
.) 00°* A0° S°I1D €91 0°00T 002 100 S° t 002 9ET

. 00° RO 0°T9 T T9 T T "T0t00T 001 T T 100 ot 1 “To0t ST .

: . —.00° ___S0°___ 0°1Y 19 ____ ___0°00T 001 100 0°1 _ 1 oot vEl .

. 00°* S0° 0°55 65 0°001 00T 100 o°T Y 00t 4 cet .

. ALK 20° 0°36T° 1T 600l T “re0 Tocnoi T 1 N.n._.IJH”.

. 00°___ - 20°___ 0°00T 1 0°00T T_____* Too_ 0°001 T t e e

.) . 00° 00° °* 0 0°00T 1 : 100 0°00T T t 0ET w

T] 00* 90° 0%9€” 'SAT 0001 a8 Troa TTocr i 64 E_IJ“”_
- __00°____ 20° 6°2¢_ 26____. _ 0°00T 66_ _____ 100 _0°1 1 66 02t |,

00° 50° 6°G6 SR 0°001 66 100 o0°t I 66 s2t .

: ; - 00° S0¢ TR 18T T 7T 0001 66 7T 100 ot Y 46 mmﬂ..im”

: : b

- “3LLSKTTTSTIIVOTTTTALN30 7035 'NId TTTI/4A30S T O/3WILT 3U.SE P ANT QINTL C303SE CLIND AHING 115 7 *SAVET S3ONISAVT e 1y KNI 03S T
o . ~ WVHOOHd NOI1ONA3H VIVQ 3DVHL IN3WO3S 000CdH T o3ovd

I

— i — — PP —— P— - g - w ww — i
e e e & e RS _ . %

|

. T e —_— e IR T S S S - e
* r

. b -

. It

.mu e R i

<o PaAn D 1) - '

L= . w— w

- - - o — —-

- Mt

: : I

R [7]
- e o s o e e S e S e 1 A 1 i S e S o 4 2 e L= E e Famas m._

i

: e "

— . — e S .

R I S— R e e NS EANG R W & & @ . . “
0°0% 002 70000 9FT LZ0 L

0°05 002 10000 9ET 220 00° 20° 216 68 0°001 00% 100 €° 1 0% LEL .

- v—
- 0°05 oot 120000 SET 220 Tt T T "

. 0°0S 00t 10000 GET 120 00° go* 5°18 €91 0001 no2 100 S° 1 007 SEl «

& ' &

0*00t 001 T10000 ¥ET 420 00° ane 0%197°19 o001 001 ~ t00 0t 1 0al SET” L

:) .

0°001 001X 10000 €£1_L20__ 00° 50° 0°%19 1y ____ o0*n0T OOT___ _ __ T00__0°T 1 001 A

0°00T 00¢ o0F000 €21 220 00° G0°* 0°tS 65 0°00T 001 o o1 X 00t €1

0°001 ™Y L1000 €217220° 00° 20° ocnoi 1 00001 T "~ 100 00T U U 2ed .

) 0°001_1 10000 0€1 220 __ 00° 20° %601 1 __ Qvo0t_1 ' ..:nam..|auobﬁ 1 1 1€l o

. h

0°001 T 02000 €21 L20 00° 00° 0° 0 0*001 I . 100" 0°00Y 1 1 0ET .

. N M

5 0*001° 66— 1bon07 9217207 00° 90°¢ 0°%4 "G4 0°001 66— "l00T "0t Y &6 er 1
* '

0°001 66 10000 S21 L20__ 00° 20° 6°26 26 __0®00v7 66 oo _o0°1 66 921 |,

1

0°001 66 10000 %21 220 00° s0° 6°cg S9 0°007 &6 100 oO0°T 1 66 s2L

1]

0°001 66~ 19000 €21 22077 00°7 77760077808 18T 7T 7T T 07001 Ab o ot TTUTT T TR 217

- . ‘

—— e -t al18%°T STIVY T dLT30 935 NId T 9/LA30S 7 O/3WIL 3118' TIN3I A3WIL 307S% CUIND ANLNA LIS *sHYT, SIINISHY ' *LMI AHINI 935

-

WYHOO0¥d NOTLONG3H VIVQ A0VHL ININO3S 000CdH t 39vd

1ace

May 15, 1973
. w0 Changes to the Segment Trace System
cc: Measurement Distribution

The following two changes have been made to the STS trace segment. The first
involves the trace record fornat and the record involves the operatjon of the
trace cede segment.

The following changes have been made to the output record format of the trace
segment. Refer to Figure 1. The positions of D3 and DL within the record have
been reversed. Bite six and seven of the {irst word are now béing used as
indicators. Bite six indicates an end-of-data condition, that is, that this
record and all subsequent records are invalid. Bit seven indicates that this
record was not generated as the result of a trace or ahsence interpunt, hut

was genérated as the resuit of a direct procedure all to the EXTRACE segment.

Yord Use
0O 1 2 3 4 5 6 7 8 15

tlal vlojcelilel
LABEL (PCAL) or i (EXIT)
CALLER STATUS
CALLER DELTAP
STACK DB <QI-4>
oL
DB
Q
z
STACK DST <CPCB (2)>
EXTRA DST <CPCS (3)>
TIHE

N N wmmis maem s e laaas

where R = Record Type
1 = Interrupt
A = Absence
T = Segment timing
0 = Timer Overflow
C = Timer Carry
L = Last Record
E = External Call

The time segment now has the capability of recovering from a tape write error.
If the error occurs, the program will stop with a HALT 1. The tape controller
status will be displayed in RA so that the source of trouble can be determinad.
Press run, and the program will issue a backspace and gap to the tape drive.
(-\ 1f this is successful, the operation will continue in a normal manner. If
unsuccessful, the program will stop with a HALT 2. Pressing run will allow
tracing to continue, but the tape will contain an error which will probably
inhibit the data reduction program from reading the tape past that point. This
means that it is hest to terminate the tracing operation and restart with a
different tape mounted..

e T T T L I ™. [T

