ANDERSON COLLEGE

%

PROGRAM

‘LOGANA sourcefile=LOGASRC

Function: This program summarizes a range of log files into one

new file

compatible with program LOGRPT. The log files analyzed

are purged by this program.

Program documentation: For detail information on files, messages,
and errors, see source listing lines 3/56.

Run instructions:

This program may be run either as Job or session.
User must have system manager capability.
tRUN LOGANA.PUB.SYS

FILE NOT FOUND

On beginning execution the program purges SORTLOG. This
message appears if SORTLOG does not exist. No response
is required,

ENTER BEGINNING LOG NBR? XXXX

Enter 4 digit number of first log file in range. Example:
if LOGA123 is the first in the range, enter @123, (CR not
required.)

ENTER ENDING LOG NBR? XXXX

Enter 4 digit number of last log file in range.

NOTE: The last log number must be greater than the first
and all log files in the range must exist. If a
log file within the range is missing, a dummy may
be created with the command :BUILD LOGXXXX ; REC=~5¢8,
1,V,BINARY;DISC=1,1,1,

The log files within the range are now summarized into

SORTLOG and purged. A maximum of 20 jobs may be open at

one time in the log files. Job records are not carried

over between log files. The summary records in SORTLOG

are now arranged in chronological order and contain the
following:

CPU time (seconds)

Connect time (minutes)

Records processed (all files except printer
(LDEV=6) and terminals (LDEV>1¢)).

Lines printed (records processed LDEV=6).
Time stamp-off

-

A, Time stamp-on

B. Job type and number
C. User name

D. Job name

E. Group name

F.

G

H.

o=

\ ¢

PROGRAM ILOGANA:

Page 2

8. END OF PROGRAM

‘9. To prepare the file SORTLOG for use by program LOGRPT,
SORT must be run as follows:

FILE INPUT=SORTLOG
3FILE OUTPUT=SORTLOG
:RUN SORT; STACK=10¢0¢
>KEY AT 16 IS 8 LONG
SKEY AT 32 IS 8 LONG
>KEY AT 8 IS 8 LONG
>KEY AT @ IS 6 LONG
>:EO0D

END OF PROGRAM

Anderson College
Computing Center

Jan. 1974

PROGRAM |LOGRPT sourcefile=LOGRSRC

Function: This program produces a report of usage for all jobs,
users, groups, and accounts. Input is from the file SORTLOG as
prepared by programs LOGANA and SORT plus a rate file RATES. The

output is a printed report which shows the following information

for each job:

A, Job name

B. Job number

C. Date-on

D. Time-on

E. Time-off

G. Connect time and connect time charge

H. CPU time and CPU time charge

I. Records processed and record processing charge
J. Lines printed and printer charge

K. Total job charge,

The output is ordered by user, group, and account and totals are

given at each level plus grand totals.

Program Documentation: For detail information on files (including
file RATES), messages, and errors, see source ligting lines 3/55,

79/95. Note: This program requires that procedure DOLLAROUT be

in SL.PUB.SYS as an intrinsic.

Run instructions:

1. This program may be run either as job or session.
2. User must have system manager capability.
3. :RUN LOGRPT

The report is now printed on the line printer.
4. END OF PROGRAM

The file SORTLOG remains intact and LOGRPT may be rerun,

Anderson College
Computing Center

Jan. 1974

L)

Program { FOOTBALL Basic program file = FOOTBALL
Basic data file = DATAl
Basic data file = DATA2

Function: This program simulates a regulation football game
using two terminals. Each team's plays (offensive and defensive)
are called by a "quarterback" at a separate terminal. The files
DATAl and DATA2 contain probabilities for each kind of play
(DATAl) and defensive skew factor (DATA2).

Run Instructions:

1. The I/0 table (MPE) must be medified to allow terminals
to accept data (JAID).

2. Determine the LDEV # for the "visitors'" terminal. This
may be done by logging on and running WHO.PUB.SYS.

3. Enter a :DATA command* on the "visitors'" terminal.
4. Log on* the "home" terminal and determine its LDEV #.

3. Enter these file commands on the "home" terminal:
{FILE TEAMI];DEV=("home" terminal LDEV #)
:FILE TEAM2;DEV=("visitors'"terminal LDEV #)

6. Run the program as follows:
:BASIC
>RUN FOOTBALL

-

7. The "visitors'" terminal will be released when
a. FOOTBALL ends, or
b. The home terminal hangs up, or
¢. The visitors' terminal enters :EOD.
8. All rules, options, etc are explained as the program runs.,

* The DATA command in Step 3 must use exactly the same job
identification as the user in Step 4. .

ExamEle

Home Terminal

tHELLO PRO.GAMES
:FILE TEAMI;DEV=14
:FILE TEAM2;DEV=15
:BASIC

>RUN FOOTBALL,

Visitors' Terminal

:DATA PRO.GAMES

Anderson College

Computing Center
Jan. 1974

PROGRAM sourcefile = WHOSRC

Function: This program, when executed, prints a
formatted dump of the information available from
the intrinsic WHO. The output is to $STDLIST; a

sample is shown below.

$RUN WHO.PUB.SYS

YOUR CURRENT ATTRIBUTES ARE AS FOLLOWS:
USER = FIELD

HOME GRP = PUB

LOGON GRP = USERS

ACCT = SUPPORT

INTERACTIVE, DUPLICATIVE, SESSION

USER ATTRIBUTES: GL, AL, AM,
FILE ACCESS: SF, ND
CAPABILITY CLASS: IA, BA
LOGICAL DEV # = 13

END OF PROGRAM

Anderson College
Computing Center

Jan. 1974

PROCEDURE DOLLARIN(word,string,length);

VALUE length;
INTEGER length;
DOUBLE word;

BYTE ARRAY string; sourcefile=SLPUBSRC

Function: This procedure converts an ASCII string contain-

ing a dollar amount into a double word repregsenting the
corresponding number of cents. Dollar signs ($), commas (,),
blanks (), and plus signs (+) in the ASCII string are ignored.
A minus sign (~) or the letters (CR) anywhere in the string will
cause the returned value to be negative, Any other non-numeric
characters except the decimal point (.) will cause an error
condition.

word The double word into which the converted value
is placed.

string The byte array containing the ASCII string to
be converted.

length The length of the byte array (cannot be nega-
tive).

The DOLLARIN command can result in the following condition
codes:

CCE Successful conversion.
CCcG Tllegal character found in string.
CCL (This condition code is not returned.)

Anderson College
Computing Center

Jan. 1974

PROCEDURE | DOLLAROUT(word,string,length, type):

VALUE word,length,type;

DOUBLE word;

INTEGER length,type;
BYTE ARRAY string; sourcefile=SLPUBSRC

Function: This procedure converts a double word into an ASCII
string with the two low order digits to the right of the decimal
point. A dollar sign ($) and/or commas are optionally included in

the string.

The double word is assumed to represent an integer

number of cents, not dollars.

word

string

length

type

The DOLLAROUT
CCE
CCG

CCL

The double word to be converted to ASCII code.
Its value is interpreted as an integer number of
cents, and may be positive or negative.

The byte array into which the converted value 1s
placed. The result is right justified.

The length of the byte array. (Note that 4<length
<132.)

An integer identifying the kind of conversion de-
sired (see HP 3000 Compiler Library: INEXT'):

type<¢ -2 PFw.2 format,example: 1234.56

type=¢ ~2 PNw.2 format,example: 1,234.56

type>@ -2 PMw.2 format,example: $1,234.56
command can result in the following condition codes:
Successful conversion.

No conversion; length>132.

No conversion; length not long enough to contain
the results.

Anderson College
Computing Center

Jan. 1974

PROCEDURE |DUMPSTACK ; sourcefile = SLPUBSRC

Function: This procedure, when called, prints the following
information: the contents of DL, DB, Q, 8, Z, Index, Status
and P followed by a dump of the stack from DB+§ to S. The
values printed correspond to the values Just before the call
to DUMPSTACK is made. All values are in octal and are
clearly labeled. Output is to file "LIST" which defaults to
device "LP" with characteristics ASCII, CCTL, WRITE ONLY.
The output file must have a record width of 66 words or
greater.

With this procedure the condition code remains unchanged.
Any errors encountered will cause the program to print

"XERROR" followed by termination.

Anderson College
Computing Center

Jan. 1974

¥\

PROCEDURE |DUMPREG; sourcefile = SLPUBSRC

Function: This procedure prints the current contents
of the stack registers (DB, DL, Z, STAT, X, Q, 8) on
$STDLIST when called. The values printed correspond
to the values just before the call to DUMPREG is made.
Note that DL, Z, Q, and S are DB relative and that DI,
is normally negative in two's complement form. This
is useful in debugging programg where stack overflow

or underflow occurs.
With this procedure the condition code remains unchanged.

Sample output:

DB = %15625¢
DL = %177732
Z = 7001605
ST = %@6@151
X = Z000007
Q = Z09p273
S = %000314

Anderson College
Computing Center

Jan. 1974

PROCEDURE | READCARD (buffer);

ARRAY buffer; sourcefile = SLPUBSRC

Function: When called, this procedure causes a card to be read
from the card reader (logical device #5), and stores the data
in column-~binary form. Each card column is stored in the cor-
responding word of buffer with the bit in row 12 stored in

bit 11 and the bit from row 9 stored in bit @.* READCARD
bypasses the MPE file gystem. Therefore the following should
be noted:

1. A :DATA card is not required to precede the data,
2. Cards with a colon in column 1 are not intercepted

or otherwise recognized by MPE. Therefore these
cards may be read as data.

3. No check is made for other users on the card reader.
Care must be used not to "steal" another user's
data,

4. An :EOF card is not needed or required. The user
must determine programatically when the last card
has been read.

buffer The logical array into which the column binary data
is stored. It must be at least 80 words in length.

The READCARD command can result in the following condition codes:
CCE The card read was Successful,

CCL An error occurred during the read operation or inguf-
ficient stack Space exists for the operation.

CCG (This condition is not returned.)
This procedure must be compiled by a user with privileged mode
capability,

* See 30106-90001 Maintenance Manual: 30106A Card Reader
Subsystem for details,

Anderson College
Computing Center
Jan. 1974

PROCEDURE |HOLTH (source,dest,cnt,code);

ARRAY source;

INTEGER cnt;

LOGICAL code;

BYTE ARRAY dest; sourcefile = SLPUBSRC

Function: This procedure converts data from column binary
form to ASCII or IBM 1620 BCD form., It is normally used with
procedure READCARD to process cards containing part ASCII and
part binary data.

gsource The word array containing the column binary data
to be converted.

dest The byte array into which the converted output
is stored.

cnt An integer whose value indicates the number of
words to be converted.

code A logical word indicating the type of conversion:
TRUE = IBM 162¢f BCD,
FALSE = ASCII.

With this procedure the condition code remains unchanged.,

Anderson College
Computing Center
Jan. 1974

Running Compilers as programs instead of subsystems

Occasionally it is useful to have more than one’ version of a compiler

available at one time. This may be done by storing one version and
running it as a program.

Example: a new version of SPL is received but the old version is
kept until the new one is checked out. The following commands save
the old version and put up the new one:

tHELLO MANAGER.SYS

:RENAME SPL, SPLOLD

:FILE TAPE;DEV=TAPE

:RESTORE *TAPE;SPL;SHOW {new SPL is up as

subsystem)
:BYE

The new version may now be invoked with the :SPL command in the usual
manner., To call the old version it is first necessary to put in file
equations using the formal designators of the compiler. Example:

{FILE SPLTEXT=MYPGMSR
:FILE SPLUSL=$NEWPASS
:FILE SPLLIST;DEV=LP
:FILE SPLMAST=$NULL
:FILE SPLNEW=S$NULL

To run the compiler, give a RUN command with parameter=3l. Example:
:RUN SPLOLD.PUB.SYS;PARM=31

With appropriate file names, this procedure should work for other
compilers as well.

Anderson College
Computing Center

ANDERSON COLLEGE COMPUTING CENTER

Report on Multiprogramming Efficiency
and File System Overhead Under MPE B.1.S4

November 8, 1973

Introduction

The accounting system of MPE version B does not count CPU time used
by the system on behalf of a user (such as I/0 handling) as part of the
user's CPU time, This experiment was conducted to determine:

1. If the unaccounted for CPU time could be correlated with the
number of records processed;

2. What the average overhead is per record processed;

3. What additional overhead is incurred by multiprogramming.

Conclusions

1. Unaccounted for CPU time correlates very highly with the number
of records processed.

2. The average overhead per record processed is approximately 65 msec,

3. The additional overhead incurred by multiprogramming is about two
pPercent when code can be shared.

Descrigtion

A single job was selected which made heavy use of the file system,
was short enough to be tested in a reasonable time, and which could be
run simultaneously by several users. The Job was to compile and prepare

an SPL program of 402 lines of source code (LOGRPT). Paper tapes were
pPrepared with the following commands:

¢HELLO CR.CC
:SPLPREP LOGRSRC
:BYE :
The source file (LOGRSRC) included a NOLIST command in the second line,.

Initially this job was run, from paper tape, with no other users on
the system. Following this session, the same job was run from three

terminals
each case

human res
obtained.

time,
Job

#s1
{52
#s3
#s4

Discussio

1,

with all sessions starting within a 20 second period. 1In
the session was run entirely from paper tape, eliminating
ponse-time as a factor. The following table shows the results
All times are in seconds; sessions 2-4 were run at the same

Connect time CPU time Records processed

107.9 27 1344
329.6 28 1267
297.5 27 1232
283.8 25 1155

11}

The formula CON=CPU+T*REC was applied to the above data where:

CON is total elapsed time for one or more sessions,

CPU is total CPU time for one or more sessions,

T is a factor to be assigned as overhead time per record,

REC is the number of disc records processed by one or
more sessions.

In the case of #S1 the factor T was found to be 60.1 msec. per
record while in the combined run of #52,3,4 it was found to be
67.6 msec. The difference is probably due to the additional
system overhead involved in running three simultaneous jobs.

The close agreement between these figures would indicate that a
value of 60-70 msec. is very consistent when averaged over a
medium sized job.

The total elapsed time for #52,3,4 was 329.6 seconds. This
compares closely with 323.7 seconds which is triple the time

for #S1. The difference is less than 2%. Since sessions #52,3,4
were run very nearly in synchronism, they would be expected to

be either I/0 bound or compute bound simultaneously, thus negat-
ing any gain in efficiency due to multiprogramming. In actual
experience the sessions seemed to leap~frog past each other and
#52 which started first was the last to finish. This ig probably
due to the nature of code sharing as noted below.

The following table shows the files closed by each session with
the number of records processed.

Session

File Records #S1 #S2 #s3 #84
1. LOAD.PUB.SYS 2 X X
2. SL.PUB,SYS 47 X X
3. SPL.PUB.SYS 63 X X
4. SPL.PUB,SYS 2 X X X X
5. $NEWPASS 384 X X X X
6. TEMPLIST) X X X X
7. TEMPCODE 282 X X X X
8. SPLINTR.PUB.SYS 20 X X X X
9. LOGRSRC 422 X X X X
10. SPLLIST 8* X X X X
11. LOAD.PUB.SYS 2 X X
12, SL.PUB.SYS 52 X X
13. SEGPROC.PUB.SYS 23 X X
14. SEGPROC.PUB,SYS 2 X X X X
15. $NEWPASS 37 X X X X
16, $OLDPASS 6 X X X X

* $STDLIST, not counted in totals,

It can be seen that #S2 bore the cost of allocating the compiler
(files 1-3) while #S3 bore the cost of allocating the segmenter
(files 11-13), Thus in each case the other two sessions were
glven a "free ride" because they could share the allocated code.
The efficiency thus gained appears to nearly (but not entirely)
compensate for the added overhead involved in multiprogramming .

SdJSL young

ade] zadegq

82349 WY
_ oSTp
v888¢

N

Wd2009

Ispeay pae)
Ve682 &

Wd'1002
I93uT1g SUL]

Vo192

937700 NOSYAANY w
T uvis
foxd STeUTWISL (¢

+ L¥0S .

10900 f\\\J\/\ - oISVE |
oIsve
NVILY04 _
1dS : smapoy m umMMamﬂwwsz
- 2TpeA _ Teuyum _
B 149008 __
aaxaTdI3ITNK _
TeuTmIay], _
T2uuey) I23utag _
IaxeTdITNR aTosuo) _
V29LT
$934q Wg'Y | _
OSTP H
Y006L

d0I ndo _
spaom 91 _
! _ V00T12 _
spIom Mz spiom YZ¢ _ 20002 4 1lu

9TNPOK 310) 9InpoN 2109 _ — T T - e

000€ dH A . A@F\

