BASIC/3000 Compiler

Reference Manual

hp: PACKARD

HEWLETT hp;

HEWLETT-PACKARD COMPANY

PART NO. 32103-90001
PRODUCT NO. 32103A

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA 95050

Printed in U.S.A. 11/74

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing. perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

ii

Copyright © 1976 by HEWLETT-PACKARD COMPANY

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If

a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page. Within the

manual, changes are marked with a vertical bar in the margin.

Pages Effective Date
Title ... Jun 1976
Htov ..o o Jun 1976
VIL o Nov 1974
1-0to 1-2 .. Nov 1974
2-1t02-5 L Nov 1974
3-1t03-6 ... Nov 1974
4-1t04-6 ..., Nov 1974

iii

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title
page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated,
the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First Edition. Nov 1974
Update package #1 Jun 1976
Update #1 Incorporated. Sep 1977

CONTENTS

Section I Page
INTRODUCING THE BASIC/3000 COMPILER
Purpose 1-1
Overview of Operation 1-1
Language Considerations 1-1
Initializing Variables. 1-1
Non-BASICCalls. 1-1
Number of Variables.................. 1-1
Program Size 1-2
Program Names............................... 1-2
CHAINand INVOKE. 1-2
COMMONBlocks 1-2
FOR Statement 1-2
Error Checking. 1-2
Nested BASIC 1-2
Section 11 Page
COMPILER COMMANDS
System Commands 2-1
CompileOnly 2-1
Compileand Prepare 2-1

Compile, Prepare, and Execute. 2-1
Prepare and ExecuteOnly 2-1
MAXDATA Parameter 2-2
Subsystem Commands, 2-3
Prompts, Comments, Continuation. 2-3
CONTROLCommand 2-3
ENTRY Command.................... 2-4
TITLE Command 2-5
COMPILE Command 2-5
EXITCommand 2-5
Section I1I Page
PROGRAMMING EXAMPLES
Single-Program Example. 3-1
Segmented Programs Example. 3-1
Section IV ‘ Page
INTERPRETING MESSAGES
Compile-Time Error Messages 4-1
Run-Time Warning Messages 4-3
Run-Time Error Messages. 4-3

ILLUSTRATIONS

Title Page
Overview of Operations 1-0
Branchinginto FORLoop 1-2
Compilation of Single Program............... 3-2
Compilation of Segmented Programs. 34
Run-Time Environment of Segmented Example 3-6
Stack Traceback Example 4-4

Title Page
Attributes of Compiler Files 2-2
Attributes of Run-Time Input and List Files 2-3

Introducing the BASIC/3000 Compiler

32103A

PROGRAM
DEVELOPMENT

COMPILE

PREPARE

EXECUTE

:BASIC
tnterpreter
Commands
‘ 1 MPE/3000
BASIC < a| BASIC/3000 Operating
Program > Interpreter
System
Y
y
Output v
<
Fastsave
File
:BASICOMP
Compiler
Commands
F——»
MPE/3000
> BAS|C/_3000 Operating
Compiler System
Fastsave
File
MPE :PREP O
< USL File
MPE/3000
»| Segmenter Operating
System O
»{ Program
File
MPE :RUN
<
Library
MPE/3000 L
»| Compiled Operating
Program System
Program
File
~—

Figure 1-1. Overview of Operations

INTRODUCING THE
BASIC/3000 COMPILER|| |

1-1. PURPOSE

The HP 32103A BASIC/3000 Compiler provides a means
of converting your BASIC programs, which you have
previously debugged and stored via the BASIC/3000
Interpreter, into compiled form. This means that your
BASIC programs will exist in the system as actual code
segments, rather than as data in a data file. The result is
that the programs may be run under the operating system,
rather than through line-by-line interpreting via the
Interpreter subsystem, with a consequent reduction of
execution time.

Typically, compiled BASIC programs will execute many
times faster than when run interpretively. Of course, it
should be understood that actual speed improvement
depends on the type of program and the resource demands
on the MPE /3000 operating system. CPU bound programs,
for example, will realize a speed improvement on the order
of 10 to 30 times faster, with certain extraordinary routines
running up to 100 times faster. I/O bound programs will
run 1 to 4 times faster.

1-2. OVERVIEW OF OPERATION

Figure 1-1 illustrates the four major phases involved in
compiling and using BASIC/3000 compiled programs.
Detailed examples will be shown later, in Section IIL

1-3. PROGRAM DEVELOPMENT The first phase
is to write and debug BASIC/3000 programs in the usual
way, via Interpreter commands and statements. The
Interpreter, which operates as a subsystem under
MPE/3000, constructs the interpretive version of your
programs in files on disc. When you are satisfied that the
programs execute properly in interpretive form, you then
save the programs using the Interpreter’s SAVE FAST
command. The resulting file, called a BASIC fastsave file,
is the only acceptable source input for the compiler.

1-4. COMPILE. The second phase is to compile the
debugged interpretive programs which now reside in one
or more BASIC fastsave files. The BASIC/3000 Compiler,
operating as a subsystem under MPE/3000, compiles the
programs into relocatable binary modules in a USL (User
Subprogram Library) file when you give the COMPILE
command.

1-5. PREPARE. The third phase is to prepare the
USL file into runnable form. This is done, typically, by the
MPE/3000 command :PREP. This command invokes the
MPE /3000 Segmenter, which binds the relocatable binary
modules into code segments in a program file.

1-6. EXECUTE. The fourth phase is to execute the
program file, typically by the MPE/3000 command :RUN.
During execution, reference will be made to subroutines in
the Compiler Library, and also to a BASIC runtime library
which exists in the system SL (Segmented Library).

Note: The ‘“‘Prepare” and ‘Execute’” phases can
be accomplished automatically following
compilation by use of the :BASICPREP
and :BASICGO commands; see defini-
tions in Section II.

1-7. LANGUAGE CONSIDERATIONS

There are a few semantic differences between interpretive
and compiled BASIC that you should be aware of when
writing BASIC programs that you intend to compile.
These are described below.

1-8. INITIALIZING VARIABLES

Numeric variables are not preinitialized to the undefined
number (1 in bit 0, followed by all zeros) unless CONTROL
INIT is specified; see command definition in Section II. As
in the Interpreter, the UND function returns true if
variables have the undefined value. Strings will as usual be
set to null by having their logical length set to zero.

1-9. NON-BASIC CALLS

The CALL statement may reference non-BASIC
procedures in your USL file as well as those in a
segmented library (SL).

1-10. NUMBER OF VARIABLES

The maximum number of program variables is limited to
182. Local variables within functions are limited to 120 per
function (including any program variables referenced
within the function). Common variables are limited to 239.

1-1

Introducing the BASIC/3000 Compiler

1-11. PROGRAM SIZE

The maximum code segment size on the HP 3000
Computer is 16K words. (K = 1024.) Normal system
configurations limit the segment to 4K words. Since the
compiled code generated is about 1 to 1-1/3 times the size
of the interpretive program, the total size of the BASIC
programs to be put into a single segment should be less
than 3000 words (as determined with the Interpreter’s
LENGTH command). Programs larger than that should be
modularized (using CHAIN and INVOKE) and placed into
separate segments using the SEGMENT option of the
Compiler’s CONTROL command. .

1-12. PROGRAM NAMES

Each subprogram is compiled as a Reclocatable Binary
Module (RBM) in the USL. The name associated with that
RBM is the filename of the BASIC fastsave program file,
omitting any qualifying lockword and group and account
names. Consequently, all BASIC programs to be compiled
into the same USL file must have unique local filenames.

1-13. CHAIN AND INVOKE

You will have to keep track of any optional starting
statement numbers, as these must be supplied to the
compiler via the COMPILE command. Also, if you specify
a program by means of a string expression (e.g., CHAIN
A$) instead of by a literal string (e.g.,, CHAIN
“PROGA"), you should keep track of all possible names
that the expression can assume; these names should be
supplied to the compiler via the ENTRY command.

1-14. COMMON BLOCKS

Even though your BASIC programs will exist in compiled
form, there can be no correspondence between BASIC and
FORTRAN COMMON areas. This is because the data
structures are not compatible. FORTRAN uses fixed
length strings; BASIC uses variable length strings.
BASIC permits redimensioning of strings; FORTRAN
does not.

1-15. FOR STATEMENT

If your program requires branching from one FOR-loop to
another which uses the same FOR-NEXT variable name,
you should be aware that the compiler will bind the NEXT
with its static FOR (nearest preceding matching FOR).
This is unlike the dynamic binding (remembers where it
came from) provided by the Interpreter. See Figure 1-2 for
comparison,

1-2

32103A

! ! Program Flow

(—;:—_—D 10 FOR V=1 TO 10

50 GOTO 1100
*

100 NEXT V
Interpreter :
does this
Compiler .
does
this :
200 FOR V=1 TO 10
1100 X=V CZJJ
1110 NEXT V

Figure 1-2. Branching into FOR Loop

1-16. ERROR CHECKING

It is assumed that any program which is to be compiled
has been debugged previously. Thus there is little run-time
error checking, which would slow down execution. Some of
the interpretive error checking NOT done by the compiler:
a. subscript bounds checking

b. use of undefined variables

¢. checking COMmon compatibilities

d. redimensioning past physical bounds.

1-17. NESTED BASIC

The use of a >BASIC command during an INPUT,
LINPUT, or ENTER request is permitted only if the
program is prepared with process-handling (PH)
capability.

,0

)

PIiLER CO

----A ﬁ =

N
L |
T

Associated with the BASIC/3000 Compiler are ‘‘system”
commands and ‘‘subsystem’” commands. You use the
system commands, which are recognized by MPE /3000, to
access the compiler subsystem. Then, once the compiler is
accessed, you use the subsystem commands to direct
compilation of your BASIC programs. After exiting from
the compiler subsystem, the system commands control the
preparation and execution of the compiled programs.

2-1. SYSTEM COMMANDS

Three of the system commands defined below invoke the
BASIC/3000 Compiler. These are :BASICOMP,
:BASICPREP, and :BASICGO. The remaining three
(:RUN, :PREPRUN, and :PREP) are associated only
with preparing and running compiled programs.

The attributes of compiler files are listed in Table 2-1.
Run-time input and list file attributes are listed in Table
2-2,

2-2. COMPILE ONLY

The :BAS:COMP command invokes the compiler for
compilatic.: only. That is, on exiting from the compiler
subsystem, the compiled programs are left in a USL file;
preparation and execution do not follow automatically. The
:BASICOMP command is written as follows:

:BASICOMP [commandfile] [,[uslfile] [listfile]]

None of the file designators is necessary as they all have
defaults associated with them. Any one or two, or all three
of them can be present. The file designators are defined as
follows:

commandfile
the file from which all subsystem commands are read;
default is $STDIN. (Formal file designator is
BSCTEXT.)

uslfile

the USL file on which the compiled object program is
written. If omitted, SOLDPASS is used if it is an
existing USL file; if not, SNEWPASS is used. (Formal
file designator is BSCUSL.)

listfile

the file which receives all compiler list output. If
omitted, $STDLIST is used. (Formal file designator is
BSCLIST.)

2-3. COMPILE AND PREPARE

The :BASICPREP command invokes the compiler for
compilation and the Segmenter for preparation. That is, on
exiting from the compiler subsystem, preparation of the
USL file into an executable program file occurs
automatically. (The USL file is left in $OLDPASS unless

$SNEWPASS was used for the program file.) The
:BASICPREP command is written as follows:

:BASICPREP [commandfile] [,[progfile] [,listfile]]

The file designators commandfile and listfile are as defined
above. The progfile designator is defined as follows:

progfile

the program file onto which the prepared program seg-
ments are to be written. If omitted, the default file
SNEWPASS is assigned. (Formal file designator is
BSCPROG.)

24. COMPILE, PREPARE, AND EXECUTE

The :BASICGO command invokes the compiler for
compilation and the Segmenter for preparation, and
initiates program execution. That is, on exiting from the
compiler subsystem, preparation and execution of the
program file occurs automatically. (The program file is left
in SOLDPASS.) The :BASICGO command is written as
follows:

:BASICGO [commandfile] [listfile]

2-5. PREPARE AND EXECUTE ONLY

The :RUN command executes a compiled BASIC
program, assuming that it exists as a prepared program
file. The :RUN command (in simplified form for most
BASIC applications) is written as follows:

:RUN progfile [NOECHO] [;PARM=label]
where

progfile
the name of the program file that contains the prepared
program.

NOECHO

secondary entry point; indicates that input is not to be
echoed to the output file. This parameter is effective
only when input is not echoed automatically by the
input device.

21

Compiler Commands

Table 2-1. Attributes of Compiler Files

32103A

Command File List File USL File

Formal Designator

User Specified BSCTEXT BSCLIST BSCUSL

Default $STDIN $STDLIST SOLDPASS/$NEWPASS
File Options

Domain OoLD NEW OLD first

NEW if old fails
Type ASCH ASCIi Binary
Record Format Undefined Variable Fixed

Others

Access Options

*Disallow :FILE

Access Read only

Restriction Share
Record Size Default
Device Default
File Size Default

*Disallow :FILE
Carriage control

*Disallow :FILE

Write only Input/output
Exclusive Exclusive
Default 128

Default Default

5000 Default

* (if not user specified)

label

the statement number in the ‘‘main”” BASIC program
at which execution is to begin. This label must have
been declared at compile time as an optional entry
label; see COMPILE command.

Refer to the MPE/3000 reference manual if any of the
other :RUN parameters is required.

The MPE/3000 commands :PREP and :PREPRUN may
also be used for program preparation as described in the
MPE/3000 reference manual. The optional NOECHO and
PARAM= parameters are available following the uslfile
parameter.

26. MAXDATA PARAMETER

If the executing BASIC program contains either FILES or
COM, the MAXDATA parameter must be provided in the

2-2

:PREP, :PREPRUN, or :RUN command. This is because
the file buffers and common are dynamically allocated on
the stack in the DL-to-DB space. MAXDATA must be
specified large enough to accommodate the sum of the
following:

a. File buffer space. This is the maximum sum of the
lengths of the file buffers for all files open
simultaneously. The length of a file buffer is the size of
one record of the file.

b. Common space. This is the maximum sum of all COM
areas active simultaneously.

¢. Primary and secondary DB. 600 words maximum.

d. Program space. This is the amount of stack necessary
for local variables. Summing of the space requirements
for nested programs (INVOKE or multiline function

. reference) should be included. Program space can be
taken from the STACK estimate on the label map.

Mo

Y

32103A

Compiler Commands

Table 2-2. Attributes of Run-Time Input and List Files

Input File List File
Formal Designator
User Specified BASIN BASLIST
Default $STDINX $STDLIST
File Options
Domain Old and Temporary Old and Temporary
Type ASCli ASCIHI
Record Format Variable Variable
Others Allow :FILE Allow :FILE
Carriage control
Access Options
Access Input only Output only
Non-multirecord access Non-multirecord access
Restriction Default Default
Record Size -132 Default
Device Default Default
File Size Default 1600

2-7. SUBSYSTEM COMMANDS

2-8. PROMPTS, COMMENTS, CONTINUATION

Examples:

$CONTROL<<CONTINUE COMMAND &
$ON NEXT LINE.>>SOURCE

The prompt character for compiler commands is the dollar
sign ($). It may optionally be placed as the first character
of each command in batch or session mode. Comments
may be inserted before, after, or between command
parameters. A comment is any string delimited by double
less-than symbol at the start (<<) and double greater-than
at the end (>>). To continue any command to the next line,
use an ampersand (&) as the last character on the current
line. Command records must be contained in columns 1
through 72.

2-9. CONTROL COMMAND
Example:

$CONTROL SOURCE,USLINIT,START=PROGA

The CONTROL command is used to set various compile
options. It is not required if default or existing options are
satisfactory for succeeding COMPILE commands. When
used, you specify one or more of the following parameters,
in any order, separated by commas. (Default conditions
are underscored.)

SOURCE or NOSOURCE

The SOURCE parameter turns on the ‘list source”
condition, requesting that the compiler list the programs
to be compiled. Initially, the condition is off (no list). Once
on, the condition remains on until turned off by
NOSOURCE.

2-3

Compiler Commands

LABEL or NOLABEL

The LABEL parameter turns on the ‘label map”
condition, requesting the compiler to print a label map
showing the beginning octal code address for each
statement. Initially, the condition is off (no map). Once on,
the condition remains on until turned off by NOLABEL.

MAP or NOMAP

The MAP parameter turns on the “symbol table map”
condition, requesting the compiler to print information
regarding the structure, type, and octal address of each
program variable for each program. Initially, the condition
is off (no map). Once on, the condition remains on until
turned off by NOMAP.

CODE or NOCODE

The CODE parameter turns on the “list code” condition,
requesting the compiler to list (in octal) the object code
generated for each program. Initially, the condition is off
(no code list). Once on, the condition remains on until
turned off by NOCODE.

LIST or NOLIST

The LIST parameter turns on the “list enable” condition,
which must be on for the SOURCE, LABEL, MAP and
CODE options to take effect. Initially, the condition is on
(lists enabled). Once on, the condition remains on until
turned off by NOLIST. When the condition is off, only
error and warning messages and completion messages are
sent to the listfile.

WARN or NOWARN

The WARN parameter turns on the ‘““warning messages”
condition, requesting the compiler to print warning
messages about dubious though possibly acceptable
language or command constructs. Initially, the condition
is on (warnings printed). The condition remains on until
turned off by NOWARN.

USLINIT

This parameter initializes the uslfile to “empty’’ status.
This is necessary when you are compiling to an old USL file
and you want to eliminate the current contents. This action
is automatically performed by the compiler when the uslfile
is currently empty or has invalid contents.

SEGMENT=segname

This parameter sets the segment name to any specified
name acceptable to the MPE/3000 Segmenter (i.e., starts
with alphabetic, up to 15 characters in length, and may

2-4

32103A

contain alphanumeric and apostrophe characters). All
subsequent programs compiled will be put in that segment
until a new segment is specified by SEGMENT=, This
action is necessary especially when program units being
compiled into one segment approach the segment size
limit. (The default segment is SEG’.)

START=progname

This parameter specifies which BASIC program (in a
CHAIN/INVOKE-connected series) is the main program;
i.e., which one is to receive initial control when prepared
and run. The default starting program is the first program
compiled. This parameter is not accepted when the
“subprogram” condition is on; otherwise it can occur
anywhere and the last occurence will hold.

SUBPROGRAM

This parameter turns on the ‘‘subprogram’” condition,
which inhibits the normally automatic generation of an
outer block in the compiled code. Initially, the condition is
off (outerblock automatically generated). Once turned on,
this condition cannot be disabled. SUBPROGRAM is
mutually exclusive with START and ENTRY during one
invocation of the compiler.

LINES=number

This parameter sets the page size of the listfile to any
specified number from 10 to 9999 lines per page. Default is
60. Whenever the next line sent to the listfile would
overflow the page size, the compiler precedes it with a page
eject, a page heading, and two blank lines.

INIT

This parameter inserts initializing code into the programs
which will be compiled by the next COMPILE statement;
this code initializes all local numeric simple variables and
arrays to the “undefined’”” number (1 in bit 0, followed by
all zeros). This value may be checked for with the UND
function. INIT is enabled for only one COMPILE
command that requires initialization code.

2-10. ENTRY COMMAND
Example:

SENTRY SUBPROG1, SUBPROGA A

The ENTRY command is used to inform the compiler of all
possible program names that may be assumed by string

32103A

expressions in CHAIN or INVOKE statements in your
main program and subprograms. Thus if there is an
INVOKE A$ in a source program, all values which could
be assumed by AS$ should be specified in an ENTRY
command; it is not necessary if CHAIN or INVOKE
specifies a literal string (e.g., INVOKE “A”’). Any number
of ENTRY commands may be given; each one simply adds
more names to the chain-invoke table. (A reference that is
not in the table is treated as a library call. In such a case,
your program executes a dynamic LOADPROC from the
segmented libraries; this is costly in execution time.) The
ENTRY command cannot be used with a SUBPROGRAM

vy ot

paves 1 teY
Lullipluativil.

2-11. TITLE COMMAND
Example:
$TITLE “PROGRAM “C”* LISTING”

The TITLE command replaces the title portion (columns 29
through 132) of the standard page heading with the
specified string or strings. The title begins in column 29 and
is extended by blanks if less than 104 characters. If more
than one string is specified, the separating commas, blanks,
or comments are not included in the title, and the strings are
concatenated. Two adjacent quotes can be used to include
one quote within the string. If no parameter is present, the
title portion will be blank.

2-12. COMPILE COMMAND
Example:

$COMPILE PROG1, PROG2 (100, 250)

Compiler Commands

The COMPILE command causes compilation of the
specified BASIC fastsave programs to begin. If a source
program has multiple entry points, each entry point (other
than the starting statement) must be listed in parentheses
following the program name. Programs in other accounts
and/or groups may be compiled into your USL file by using
a fully qualified file designator, of the form:

filename [/lockword] [.group[.account]}
For example:

$COMPILE PROGX.PUB.SYS

However, only filename is associated with the RBM in the
USL file.

If an active entry with the same name already exists in the
USL file, the existing entry is made inactive. This ensures

that the most recently compiled program is the one
prepared into the program file.

Any desired compile options must be established with a
CONTROL command prior to issuing COMPILE.

2-13. EXIT COMMAND
Example:
SEXIT

The EXIT command terminates use of the BASIC/3000
Compiler.

2-5

N it

PROGRAMMING EXAMPLES

awnd 2.0 atvatn tvuninal avamnlag AF 11 }.

Figures 3-1 and 3-2 illustrate typical examples of using the
BASIC/3000 Compiler. For both examples, it is assumed
that the BASIC programs have been entered into the
system via the BASIC/3000 Interpreter, have been

debugged, and have been SAVEd with the FAST option.

In the printouts shown in the examples, user inputs are
distinguished by system prompts (:) or subsystem prompts
(8). All other printouts are system or subsystem responses.

3-1. SINGLE-PROGRAM EXAMPLE

Figure 3-1 shows the compilation, preparation, and
execution of a simple 12-line BASIC program, the purpose
of which is to list the contents of any ASCII file. The name
of the program is FILELIST.

The step-by-step commentary facing the printout explains
the actions occurring as a result of each input command.

3-2. SEGMENTED PROGRAMS
EXAMPLE

Figure 3-2 shows the compilation, preparation and
execution of programs which are linked by CHAIN and
INVOKE statements and are compiled into several
segments.

Program A is the main program. When run, this program
will receive initial control from the outer block. It will
prompt a user for a program name (B or C) to execute
next. Thus program A will selectively INVOKE to either
program B or program C. Program B also chains to
program D.

As described in Figure 3-2, programs B and D are
compiled into SEG3, C into SEG2, and A into SEG1.

To illustrate the actions occurring when these segmented
programs are executed, consider a response of “B”’ to the
program prompt, “PROGRAM TO EXECUTE?” In such
a case, program control is as follows: when A receives
control, it invokes B. B then chains to D. When D executes
an END statement, control passes back to A. A
terminates by executing a STOP statement.

A time sequence showing the run-time environment is
given in Figure 3-3. The sequence shows the code segment
and stack conditions at five points in time. Operation is as
follows.

TIME 1

The outer block, B'RUNOB, receives initial control from
the loader. The outer block calls a library procedure which

BASIN

the input file, which is read from by the statements
INPUT, ENTER, and LINPUT. The default for this
file is $STDINX. It can be overridden using the formal
designator BASIN in an MPE/3000 :FILE command.

BASLIST

The output file, which is written to by the statement
PRINT, PRINT USING, MAT PRINT, and MAT
PRINT USING. The default for this file is
$STDLIST. It can be overridden using the formal
designator BASLIST in an MPE/3000 :FILE
command.

w

Once the files are open, buffer space is allocated
dynamically on the stack. Other BASIC run-time
variables are also initialized in primary and secondary DB.
Then the program specified by START= (program A)
during the compilation is invoked.

TIME 2

Program A, in segment SEG1, receives control. It
allocates its program variables on the stack and then asks
for a program name to be input. The name read in was B,
so program A invokes to program B.

TIME 3

Program B, in segment SEG3, receives control and does
local allocation of program variables. COMmon space is
also allocated by B and it passes information to D through
that COMmon. The actual COMmon space is dynamically
allocated in the DL to DB area and is completely managed
for the user. Pointers to the COMmon space are in primary
DB. Program B now chains to D.

TIME 4

The program local space for program B is overlayed by the
local space of program D. The space does not need to be
saved because a CHAIN does not return. Program D, also
in segment SEG1 (but not required to be) receives control
and allocates its local variables. When it executes an END
statement, program D exits back to program A. COMmon
is deallocated prior to the exit.

TIME 5

Program A, in segment SEG1, receives control again and
requests the next program to execute. Because a null
string (zero characters) is input, program A terminates in
a STOP statement.

3-1

Programming Examples

32103A

After logging on {or following a :JOB card in batch), specify the file characteristics for the
USL file which is to receive the compiled code, namely: it is a NEW file to be SAVEd for
future access. For this example, the USL file will be named USLF. Next, load the compiler
via the BASICOMP command. This command opens three files. Defaults are accepted
for commandfile (note comma) and for listfile. These defaults are $STDIN and $STDLIST
respectively. For uslfile, a back reference is made to USLF (note asterisk).

In response to compiler prompts, specify desired compile options via CONTROL
commands: initialize the uslfile {USLINIT) and request a SOURCE listing, a symbol MAP,
and a LABEL map. The compiled code will be put into a segment called TESTSEG. Then
give the COMPILE command.

The compiler now prints out a source listing and compiles the program.

Next the symbol map is printed, showing where each variable is located in the stack. The
“,I" following an address indicates an indirect address {see string variables). Addresses
are in octal.

Next the label map is printed, giving the starting location in the code list for each
statement. (CODE list was not requested in this example.) Statements 10, 20, 100, and
110 are shown “equivalent” to other statements. This indicates, for example, that any
branch to line 110 will actually branch to line 80. Lines 120 and 130 are “‘equivalent’’ to
the end of the program. The ENTRY POINT is the octal address at which execution will
begin. STACK indicates how much stack is required for this program; this can be used in
estimating the MAXDATA parameter when preparing the program file (see “MAXDATA
Parameter” in Section II).

Compilation is now complete. In response to the next command prompt, exit back to
MPE/3000.

Now prepare the USL file into a job-temporary program file named BASPROG.
MAXDATA must be specified; 2000 words is estimated for this example. A PMAP is
requested, though it is not necessary.

After the file is prepared, MPE/3000 prints out the PMAP. Note that two segments were
prepared: the default segment SEG’ {which contains an outer block generated by the
compiler with an external reference to the compiled program, FILELIST) and the
TESTSEG segment which contains the program.

To make the job-temporary program file BASPROG permanent, specify a SAVE
command.

Now that the program exists as a program file, it can be run.

The compiled BASIC program runs, prints out a prompt for input. We respond with a file
name which, for illustrative purposes here, is a test file called TESTFILE consisting of 5
records. We terminate by typing a carriage return in response to the next prompt.
MPE/3000 prints an END OF PROGRAM message and prompts for the next command.

=/

Figure 3-1A. Compilation of Single Program

32103A

Programming Examples

¢FILE USLF,NEW; SAVE‘/
sBASICOMP ,*USLF

PAGE 0081 HP32103A,00.00

$CONTROL SOURCE, Mﬁ;, LABEL, SEGMENT:TESTSEG ’BL{>.
$COMPILE FILELIST

4 @ REM -~ FILE LISTER
20 FILES x
30 PRINT "FILE NAME? “;
40 LINPUT BS
5@ IF LEN(BS$)<>@ THEN DO

60 ASSIGN BS$,1,I
70 ON END #1 THEN 30
80 LINPUT #13A%

50 PRINT USInG 180343
100 IMAGE 80A
tie GOTO 892

120 DOEND

138 DIM AS(80),B%18]

(SYMBOL AP
FILELIST
o { mE TYPE STRUCTURE ADDRESS
AS STRING a+ 5,1
B STRING a+ 61
I REAL SIMPLE VAR @ 7
“
LABEL MAP ENTRY POINT | STACK 74
LABEL LOCATION LABEL LOCATION LABEL LOCATION LABEL LOCATION
0 i6: 38 63 20: 38 63 30 63 49 1 26
50 104 1Y) 111 76 121 8o 142
Y 155 190:= 80 6 tige: 80 A7l 120z END 173

136= END 173
—" SEXIT o+~
END OF COMPILE
0__ tPREP USLF ,BASPROG; MAXDATA=2808; PtaPv”

¢ PROGRAM FILE BASPROG.BASICOMP.LANG

SEG’ 2
WAME STT CODE EnTRY SEG
B'LLBL]]
UNLOADPROC
LOADPROC
B 'ABORTUSER
B'RUNOB
FILELIST
B INITIAL
TERMINATE®
NOECHO
SEGMENT LENGTH 254

< TESTSEG i
NAME COVE ENTRY SEG
"] 1

FILELIST
B'ABORTUSER
B'ASSIGHN
B'DEALLOCATE
B'FILES
B*FLINPUT
B'LINPUT
B'PRINTSTR
B°*PRINTUSTR
SEGMENT LENGTH 234

- -~

232 232

LN e —

232 235

w0
-3
—

ROV E -
B R R R R T

PRIMARY DB 17 INITIAL STACK 1448 CAPABILITY s2e
SECONDARY DB 400 INITIAL DL 2 TOTAL CODE 51e
TOTAL DB 4117 MAXIMUM DATA 3720 TOTAL RECORDS 12
ELAPSED TIME BB:02:06.607 PROCESSOR TIME B0l 275

o\ END OF PREPARE
:SAVE BASPROG v~
m/ :RUN BASPROG
FILE MAME? TESTFILE
<<meomommecaomeo TEST FILE-+---=--==-momomnex »>

<< >>

<< TOTAL LINES = 5 >>

<< >>
e S S >
FILE NAME?

END OF PROGRAM
s

Figure 3-1B. Compilation of Single Program

Programming Examples

32103A

Defaults are accepted for usifile (SNEWPASS) and listfile {$STDLIST). Commandfile is
TEXT.

Page title.

Compile programs B and D into segment SEG3. Program B has optional entry points at
statements 50 and 100. Also, program B may be called by a string expression, so its name
is entered in the Chain-Invoke table.

Compile program C into SEG2 with optional entry points at statements 50 and 100. Put
name C in Chain-Invoke table.

Compile program A into SEG1. Declare this to be the main program. Request source
listing.

Source listing of main program.

Exit to MPE/3000.

Request to prepare and run programs in uslfile (now $OLDPASS) and provide a PMAP.

PMAP begins.

Outer block in SEG’ contains STT links to programs, B, C, and A, in segments 3, 2, and 1
respectively.

Segment 1 (SEG1) contains program A.

Segment 2 (SEG2) contains program C.

Segment 3 (SEG3) contains programs D and B.

End of PMAP.

Sample run of program. Terminates by input of null string.

®© © 6 0000 0 ©06 00OC

©

© ©

Figure 3-2A. Compilation of Segmented Programs

32103A Programming Examples

:BASICOMP TEXT

PAGE 8¢21 HP32123A.CE. D0

181

SCONTROL USLINIT,SEGMENT=SEG3
$CCHMPILE B(58,182),D
$ENTRY B
$CONTROL SEGMENT=SEG2
$COMPILE C(E2,1@8¢)
$ENTRY €
$CONTROL SEGMENT=SEGI
SCOMNTRCL SOURCE,START=A
$CCMPILE A
1z DIM PsL8)
29 INPUT “PROGRAM TO EXECUTE?",Pg
32 IF LEN(P$)<>2 THEN DO
42 INUOKE Pg,5
52 GOTO 28
62 DOEND
72 STOP
SEXIT

797

EXD OF CO¥PILE
:PREPRUN $OLDPASS; PMAF

PROGRAM FILE SNEWPASS.BASICOMP.LANG
COMMON ARRAY ALLOCATION

NAME ADRR LEN
covar ? ?

SEG* 2
NAME T CODE ENTRY SEG
B'LLEL 1 Z e
UNLCADPRQC 3

LOADPROC 4

B*ABORTUSER S

B é

c 7

B'RUNOB 2 232 230
A 1e 1
BYINITIAL 11
TERMINATE® 12
SEGMENT LENGTH 258

EEG 1
MNAME ST

n
3

0 W g 9 Y

©

[RURpRY

T CODE ENTRY SEG
A 1 2 e
B'ABORTUSER 2
B* INPUTSTR 3
B*'STOP 4
B'LLBL 5
SEGMENT LENGTH 132
SEG2 2
NAME STT CODE ENTRY SE
C 1 o] 2
B*ABORTUSER 2
B'PRINTSTR 3
SEGMENT LENGTH 110
SEG3 3
NAME STT CODE ENTRY SEG
D 1 2 2
B*ABORTUSER 3
B'DEALLOCATE 4
BYALLOCATE S
<]
2

w B2 (SRR,

R

@ 9

B*PRINTSTR
B 123 183
SEGMENT LENGTH 229

PRIMARY DB 29 INITIAL STACK 1442 CAPABILITY 608
SECONDARY DB 377 INITIAL DL @ TOTAL CODRE 730
TOTAL DB 417 MAXIMUM DATA ? TOTAL RECORDS 14
——— ELAPSED TIME B0:22:52.405 PROCESSOR TIME 30:81.746

END OF PREPARE

PROGRAM TO EXECUTE?B
PROGRAM TO EXECUTE?""

® 6

END OF PROGRAM

Figure 3-2B. Compilation of Segmented Programs 3-5

Programming Examples 32103A
TIME 1 TIME 2 TIME 3 TIME 4 TIME 5
Quter Block Program A Program B Program D Program A
receives initial receives control receives control receives control receives control
control
SEG' SEG1 SEG3 SEG3 SEG1
A D PP D A
B'LLBL e END
F-p
P
B B P T
P —» STOP
B'RUNOB
INVOKE A INVOKE B CHAIN D
DL DL DL DL DL
Allocated
COM by B cCOoM
DB Pri DB DB DB DB
BASIC |Sec DB BASIC BASIC BASIC BASIC
Runtime | Allocated Runtime Runtime Runtime Runtime
L] L] s]
b e e L
BASIN SB:af(f:Zr BASIN BASIN BASIN BASIN
BASLIST Allocated BASLIST BASLIST BASLIST BASLIST
(o) i
Program
Local
A Variables A A
) for A S
o a
Program Program
Local Local
B Variables D Variables
s for B s for D
Figure 3-3. Run-Time Environment of Segmented Example

3-6

INTERPRETING MESSAGES

IV

4-1. COMPILE-TIME ERROR
MESSAGES

Error messages which may occur during the compile phase
are presented as a WARNING or ERROR in the following
format:

**WARNING

**ERROR message [: addendum]

where the message is one of those listed below, and the
addendum is additional information given with some error
messages to further identify the cause of the error.

1 COMPILER OUT OF SPACE
Space requirements for compiling program exceed the
available memory. See your system manager. The
compiler must be prepared (:PREP) with a larger
MAXDATA, and/or the maximum stack segment
size (defined during system configuration) must
be expanded.

2 INVALID COMMAND
Not a valid compiler command.

3 INVALID CHARACTER
Extraneous character in command processing.

4 USL FILE PREVIOUSLY INITIALIZED
Given when USLINIT parameter is specified but
USL file has already been initialized.

5 USLINIT INVALID AFTER $COMPILE
COMMAND
Initialization of the USL file is invalid after a program
has been compiled.

6 INVALID NUMBER OF LINES
Number of lines cannot be set less than 10 or greater
than 9999,

7 EXPECTED A QUOTE
TITLE string must be delimited by a quote.

8 START INVALID UNDER SUBPROGRAM
MODE
When SUBPROGRAM is specified, all subsequent
START parameters are ignored.

9 EXPECTED PROGRAM NAME
A program name is expected as the parameter to
COMPILE command.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

EXPECTED A <
Comments must begin with<<; given if only a
single < is detected.

EXPECTED A &

Commands which are continued must have
ampersand as last character of the line; given if
comma is last character of the line.

EXPECTED A =
LINES, START, and SEGMENT all must be
followed by an equal sign.

INVALID SUBPARAMETER
Subparameter must be a name for START= and
SEGMENT=.

SUBPARAMETER NAME TOO LONG, TRUN-
CATED TO 15 CHARACTERS

$CONTROL PARAMETER EXPECTED

USL FILE INITIALIZED DUE TO BAD
CHARACTERISTICS

Invalid directory or directory element. Given on
COMPILE if initialization is required but user fails to
specify USLINIT.

INVALID $CONTROL PARAMETER

$ENTRY INVALID UNDER SUBPROGRAM
MODE

When SUBPROGRAM is specified, all subsequent
ENTRY commands are ignored.

$TITLE STRING TOO LONG, TRUNCATED TO
104 CHARACTERS

EXTRANEOUS CHARACTER

UNABLE TO OPEN FASTSAVE FILE
The file may not exist or cannot be opened because of
access or security restrictions.

FILE NOT TYPE FASTSAVE
File specified in COMPILE command is not a BASIC
fastsave file.

I/0 ERROR ON FASTSAVE FILE

BAD FASTSAVE FILE ATTRIBUTES
Recreate the fastsave file through the BASIC/3000
Interpreter.

4-1

Interpreting Messages

26

27

28

29

30

31

32

33

34

35

SUBPROGRAM INVALID AFTER $ENTRY OR
START
After ENTRY command or START parameter has
been specified, SUBPROGRAM parameter is
ignored.

TOO MANY PROGRAM VARIABLES

The number of program variables is limited; see para-
graph 1-10 in Section I. Reduce number of variables
by “reusing’” variables, putting values into arrays,
or putting variables in COMmon.

INVALID PROGRAM NAME
Program names for COMPILE command must be
alphanumeric and begin with alphabetic.

QUALIFIER DELETED

Group and account names and lockword are deleted
from program name and not used as part of the RBM
symbolic name.

UNABLE TO PROCESS $SENTRY COMMANDS
A temporary file is necessary and could not be
opened.

TOO MANY FUNCTION VARIABLES
Function references too many local and program
variables; see paragraph 1-10 in Section I.

$ENTRY NAME TOO LONG, TRUNCATED TO
8 CHARACTERS
ENTRY names cannot exceed eight characters.

CODE SEGMENT > 16K WORDS

The program being compiled creates a code segment
which is more than 16,384 words, the largest code
segment size possible. The program should be divided
into smaller programs.

MORE THAN 16 FILES
A maximum of 16 files is allowed.

USL FILE SPACE EXCEEDED
The space in the USL file was exceeded. Build the
USL file with more records and recompile.

Messages 36 through 52 refer to PRINT USING strings
specified as string expressions. The format string is
echoed with a caret character or up-arrow (depending on
particular device) indicating the point at which the error
was detected.

36
37
38
39
40
41
42
43
44

4-2

INVALID CHARACTER

MISSING GROUP REPLICATOR
REPLICATOR NOT ALLOWED

MISSING RIGHT QUOTE

MISSING NUMBER AFTER APOSTROPHE
INVALID NUMERIC SPECIFICATION
NUMBER > 255

MISSING D-PART

REPLICATOR > 255

45
46

47
48
49
50

51
52

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

32103A

INVALID STRING SPECIFICATION

MISSING LEFT PARENTHESIS IN C-SPECIFI-
CATION

MISSING SEPARATOR

INVALID C-SPECIFICATION

UNBALANCED PARENTHESES

MISSING RIGHT PARENTHESIS

INVALID COMPLEX SPECIFICATION
REPLICATOR = 0

COMMAND FILE RECORD TOO LONG,
TRUNCATED TO 80 CHARACTERS

BAD LIST FILE CHARACTERISTICS

Listfile is not type ASCII, or record size is less than
40 characters, or the compiler could not get write
access to listfile.

UNABLE TO OPEN LIST FILE
UNABLE TO OPEN COMMAND FILE

BAD COMMAND FILE CHARACTERISTICS
Commandfile is not type ASCII or is the $NULL file,
or the compiler could not get read access to the
commandfile.

UNABLE TO OPEN USL FILE

BAD USL FILE CHARACTERISTICS

USL file is not binary, or the file is not type USL, or
the record size is not 128 words, or the compiler could
not get read and write access to the file.

END OF FILE ON COMMAND FILE

The EXIT command is missing or misplaced in the
job stream.

END OF FILE ON USL FILE

The USL file is invalid. Recompile into a new USL
file.

END OF FILE ON FASTSAVE FILE

The fastsave file is invalid. Recreate the file through
the BASIC/3000 Interpreter.

END OF FILE ON TEMPORARY FILE
This is a compiler error. See your system manager.

END OF FILE ON LIST FILE

I/0 ERROR ON COMMAND FILE
I/0 ERROR ON USL FILE

I/0 ERROR ON TEMPORARY FILE
I/0 ERROR ON LIST FILE

I/0 ERROR ON UNKNOWN FILE
This is a compiler error. See your system manager.

32103A

80 UNABLE TO CLOSE COMMAND FILE
81 UNABLE TO CLOSE USL FILE
82 UNABLE TO CLOSE FASTSAVE FILE
83 UNABLE TO CLOSE LIST FILE

84 UNABLE TO CLOSE UNKNOWN FILE
This is a compiler error. See your system manager.

4-2. RUN-TIME WARNING MESSAGES

The execution of compiled BASIC programs is similar to
running a program in the interpreter with the NOWARN
option; i.e., most warning messages (such as overflow and
underflow warnings) are suppressed. The few warnings
given while running compiled programs allow for recovery
during input when the input file is interactive with either
the output file or $STDLIST.

BAD INPUT—RETYPE FROM ITEM nn

A string was input to a numeric variable or vice versa; or
the form of a numeric item is incorrect.

STRING OVERFLOW —RETYPE FROM ITEM nn

The string item exceeds 255 characters.

>BASIC NOT ALLOWED

The >BASIC option was disabled with BRK function;
the user is not allowed to use this feature.
TRANSMISSION ERROR—RE-INPUT LINE

A transmission error occured during input, causing
characters to be lost.

4-3. RUN-TIME ERROR MESSAGES

When an error is detected during execution, one or more
messages are printed to aid the user in isolating the
problem. If the BASLIST file and $STDLIST files are
different, the messages are printed on both files.

Interpreting Messages

Run-time error messages include the
information:

following

a. A message of the form
**ERROR nn: message

where nn and message are as listed below.

b. For file errors, a file information display indicating the
characteristics of the file and the exact nature of the
file error.

c. A stack traceback indicating where the error occurred.
Compiler library routines are denoted by prefix S; user
library routines by P or G; program modules have no
prefix. An example of a stack traceback is shown in
Figure 4-1.

0 OUT OF DATA
Exhausted the DATA list while attempting to
execute a READ or MAT READ statement.

1 NUMERIC DATA FOR STRING ITEM
The destination variable in a READ or MAT READ
statement was string but the next item in the DATA
list was numeric.

2 SUBSTRING DESIGNATOR EXCEEDS LOGI-
CAL LENGTH PLUS ONE
The first substring designator for a destination string
must always be less than or equal to string’s logical
length plus one to ensure a ‘‘contiguous’ string.

4 DESTINATION SUBSTRING EXCEEDS
PHYSICAL SIZE
The first substring designator for a destination string
must be less than or equal to the physical length; and
the substring must not extend beyond the physical
length.

5 FIRST SUBSTRING DESIGNATOR < = ZERO

6 UNABLE TO FIND CHAIN/INVOKE PRO-
CEDURE: name
The CHAIN/INVOKE procedure does not exist in
the program file or in an SL file.

7 INVALID CHAIN/INVOKE PROCEDURE NAME
CHAIN/INVOKE name resulting from a string
expression did not have the form of a file name:

filename [/lockword] [.groupl[.acct]]

Specifically, the name erroneously began with a non-
alphabetic or contained non-alphanumeric characters
other than a slash (/) or period, or slash or period was
followed by non-alphabetic character.

4-3

Interpreting Messages

32103A

**xZRROR 29

*kok STACK DISPLAY * %Kk

S:z008727 DL=177732 2402057
Q:=008733 P=@0PYT724 LCST= S130 STAT=U,1,!,L,9,8,CCE X=000v317
qd:=0080652 P=0B3662 LCST= S126 STAT=U,1,1,L,3d,0,CCG X=200vd1
Q:-0008645 P=00¥31¢¥ LCST= 00@ STAT=U,1,1,L,2,4,CCG Xz00ALLY
Q:=0006B6 P=PB2745 LCST= Si127 STAT=U,Ii,1,L,8,d,CCL X=00a020
Q:=P0B43]1 P=-0P@234 LCST= @V0 STAT:=U,1,1,L,d,2,CCG X=0d0vvY

ERR 2 :
ABNORMAL PROGRAM TERMINATION

ATTEMPT TO ACCZSS UWNOPEWNED FILE

10

11

12

13

14

15

16

4-4

Figure 4-1.

INTEGER OVERFLOW
Integer expression resulted in a value less than -32768
or greater than-+32767.

INTEGER DIVIDE BY ZERO
LOG OF NEGATIVE NUMBER
SQR OF NEGATIVE NUMBER
ZERO TO ZERO POWER

ZERO TO INTEGER POWER<= ZERO

NEGATIVE NUMBER TO REAL POWER
Floating point base (type real or long) to a floating
point power (results in type complex value).

STRING EXCEEDS 255 CHARACTERS
Maximum source string length in any expression is
255 characters.

INVALID SUBSTRING DESIGNATOR
For a string variable of the form
Ss(f,1)
the second substring designator must not be less than
the first minus one. For a string variable of the form
Ss(f;1)
the second substring designator must be greater than
or equal to zero.

17

18

21

23

25

26

27

28

Stack Traceback Example

FAILURE TO “CREATE” BASIC.PUB.SYS
The BASIC/3000 Interpreter does not exist in the
system. See system manager.

FAILURE TQ “ACTIVATE” BASIC.PUB.SYS
Cannot run the BASIC/3000 Interpreter. See system
manager.

“>EQD” INPUT
End of input detected due to ‘>EQOD”’.

INVALID STRING INPUT
Unbalanced quotes in string read by INPUT state-
ment.

INVALID NUMBER INPUT

Expected numeric constant input but the constant
had invalid form, or the destination variable is type
integer and the constant is less than -32767 or greater
than +32767.

INVALID FILE NUMBER

File number specified in a FILES statement is less
than or equal to zero, or exceeds the number of local
files.

NEGATIVE FILE SIZE
File limit specified in CREATE statement is negative.

INVALID RECORD SIZE
Record size specified in a CREATE statement is less
than 4 or greater than 319.

32103A

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

ATTEMPT TO ACCESS UNOPENED FILE
Reference was made (e.g., in a READ# statement) to
a file which is not currently open.

ATTEMPT TO LOCK NON-LOCKABLE FILE
Attempted to execute LOCK# for a file not opened
with NL or WL option.

ATTEMPT TO LOCK SECOND FILE
Only one file may be locked (with LOCK#) at a time.

ATTEMPT TO UNLOCK NON-LOCKABLE FILE
Attempted to execute UNLOCK# for a file not opened
with NL or WL option.

ADVANCE ATTEMPTED ON NON-BASIC FILE
ADVANCE# may be used only for BASIC formatted
files.

UNABLE TO OPEN FILE: TOO MANY FILES
FILES or ASSIGN statement cannot open file
because 16 files are currently open.

UNABLE TO OPEN USER FILE: filename
FILES statement cannot open file. A slash following
filename indicates the presence of a password, which
is not shown.

UPDATE ATTEMPTED ON NON-BASIC FILE
UPDATE# may be used only for BASIC formatted
files.

UNABLE TO OPEN FILE: INSUFFICIENT
SPACE FOR BUFFER

FILES or ASSIGN statement cannot open file. Use
larger MAXDATA in :RUN or :PREP command.

INVALID LINKED-FILE NUMBER

Linked-file number (specified on FILES statement in
the form “#integer”’) exceeds the number of global
files.

INSUFFICIENT SPACE FOR COMMON

Unable to expand stack for COMmon area specified in
COM statement. Use larger MAXDATA in :RUN or
:PREP command.

LINPUT# ATTEMPTED ON NON-ASCII FILE
LINPUT# may be used only for ASCII files.
ATTEMPT TO WRITE ON READ-ONLY FILE
ATTEMPT TO READ FROM WRITE-ONLY FILE

DIRECT ACCESS ATTEMPTED ON SERIAL
FILE

END OF FILE
End-of-file detected and no ON END# for that file was
in effect.

NUMERIC UPDATE ITEM FOR STRING DATA

46

47

48

49

50

51

55

56

Interpreting Messages

The expression in the UPDATE# statement was
numeric but the next item in the BASIC formatted
file was a string.

CHAIN/INVOKE/RUN TO
LABEL

Destination label specified in a CHAIN or INVOKE
statement or the PARM= parameter in the :RUN
command was not declared in a label list at compile
time. Destination program must be recompiled.

UNDECLARED

STRING EVALUATES TO INVALID NUMBER
IN CONVERT

For CONVERT of string to number, the string
expression resulted in a number of invalid form, or the
destination variable is type integer and the resulting
number is less than -32767 or greater than +32767.

INCOMPATIBLE ARRAY DIMENSIONS

In a MAT statement, the destination array is one-
dimensional but the right-hand side results in a two-
dimensional with more than one column.

INVALID DAT$ PARAMETER

The first-character designator is less than 1 or exceeds
the last-character designator. Or the last-character
designator exceeds 27.

COLUMNS < > ROWS IN MAT MULTIPLY

For MAT multiplication, the multiplicand must have
dimensions m-by-p while the multiplier must have
dimensions p-by-n.

DESTINATION ARRAY NOT LARGE ENOUGH
In a MAT statement, the number of elements
contained in the right-hand side exceeds the maxi-
mum number of elements in the destination array.

ATTEMPT TO EXECUTE FNEND
Missing function RETURN statement.

MISSING SUBSCRIPT IN FIRST OCCURRENCE
OF COM

First occurrence of COM declaration uses (*) or (*,*)
indicators. Dimensions must be declared explicity or
must CHAIN/INVOKE from a program which
declares COM explicitly.

Messages 57 through 75 all refer to a PRINT USING
format specified as a string expression. The format string
is echoed with a caret character or up-arrow (depending on
particular device) indicating the point at which the error
was detected.

57
58
59
60
61
62
63
64

INVALID CHARACTER

MISSING GROUP REPLICATOR
REPLICATOR NOT ALLOWED

MISSING RIGHT QUOTE

MISSING NUMBER AFTER APOSTROPHE
INVALID NUMERIC SPECIFICATION
UNBALANCED PARENTHESES

MISSING RIGHT PARENTHESIS

4-5

Interpreting Messages

65
66
67
68
69
70
71
72
73

74

75

86
87
88
89
90

4-6

NUMBER > 255
MISSING D-PART
MISSING SEPARATOR

MISSING LEFT PARENTHESIS

INVALID C-SPECIFICATION
INVALID COMPLEX SPECIFICATION
REPLICATOR = ZERO

INVALID STRING SPECIFICATION
REPLICATOR > 255

STRING SPECIFICATION FOR NUMERIC ITEM
Attempt was made to output numeric item in PRINT
USING with a string specification in format string.

NUMERIC SPECIFICATION FOR STRING ITEM
Attempt was made to output string item in PRINT
USING with a numeric specification in format string.

I/0 ERROR ON USER FILE
UNABLE TO OPEN LIST FILE
LIST FILE NOT TYPE ASCII
UNABLE TO OPEN INPUT FILE
INPUT FILE NOT TYPE ASCII

91

92

93

94

95

96

97

32103A

I/0 ERROR ON LIST FILE
I/0 ERROR ON INPUT FILE

I/0 ERROR ON $STDLIST

NUMERIC FILE DATA FOR STRING ITEM
The destination variable in a READ# or MAT
READ# statement was string but the next item in the
file was numeric.

STRING FILE DATA FOR NUMERIC ITEM
The destination variable in a READ# or MAT
READ# statement was numeric but the next item in
the file was string.

STRING DATA FOR NUMERIC ITEM

The destination variable in a READ or MAT READ
statement was numeric but the next item in the
DATA list was string.

STRING UPDATE ITEM FOR NUMERIC DATA
The expression in the UPDATE# statement was
string but the next item in the BASIC formatted file
was numeric.

—

READER COMMENT SHEET

BASIC/3000 Compiler
Reference Manual

32103-90001 November 1974

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

{s this manual technicaily accurate?

Is this manual complete?

T Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO. 1020
SANTA CLARA
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States. Postage will be paid by

Publications Manager, Product Support Group

Hewlett-Packard Company

General Systems Division

5303 Stevens Creek Boulevard

Santa Clara, California 95050

