HP 3000 Computer Systems

IMAGE

Data Base Management System

Reference Manual

I

HEWLETT ﬁ PACKARD

19447 PRUNERIDGE AVE.,CUPERTINO,CALIFORNIA 95014

Printed in U.S.A 9/79

Part No. 32215-90003
Product No. 32215B

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright ©1979 by HEWLETT-PACKARD COMPANY

ii

o~

DATA BASE STRUCTURE
AND PROTECTION || 1

An understanding of the data hase structure is necessary hefore the data base can he designed. This
section describes the various data elements and their relationships.

DATA ELEMENTS

A data base is a named collection of related data. It is defined in terms of data items and data sets.
Figure 2-1 contains a sample of one data set from a data base named STORE which will he used as
an example throughout this manual. The data set is named CUSTOMER. The information in this
data set pertains to the customers of a business. All the data about a particular customer is con-
tained in a data entry. Each piece of information such as account number or last name is a data
item.

DATA ITEMS

A data item is the smallest accessible data element in a data base. Each data item consists of a value
referenced by a data item name, typically selected to describe the data value. In general, many data
item values are referenced by the same data item name, each value existing in a different data entry.

For example, in figure 2-1, the data item FIRST-NAME has the value JAMES in one data entry and
ABIGAIL in another data entry.

Data Item Names
FIRST-”\“T|AL CREDIT-RATING

Data ACCOUNT LAST-NAME NAME i STREET-ADDRESS CiTY STATE 2ZtpP *
Item -
Value\f12345678 MILLER JAMES L. {1645 MARSHALL AVENUE | GLENDALE AZ{85301] 3.4

95430301 [BRIGHTON | ABIGAIL | S. |72 E. HAMPTON DRIVE CARMEL CA | 939211 6.7
Data
Entries

54777833 |GRAZIANO | ISABEL | M.} 113 SHASTA LANE SANTA CLARA CA | 95050 | 5.8

Figure 2-1. CUSTOMER Data Set Sample
2-1

COMPOUND DATA ITEMS. A compound data item is a named group of identically defined, adja-
cent items within the same data entry. Each occurrence of the data item is called a sub-item and each
sub-item may have a value. A compound item is similar to an array in programming languages such

as FORTRAN and BASIC. A data entry might contain a compound item named MONTHLY-SALES
with 12 sub-items in which the total sales for each month are recorded. (If you plan to use QUERY,
avoid using compound data items.)

DATA TYPES. The data base designer defines each data item as a particular type depending on
what kind of information is to be stored in the item. It may be one of several types of integers,
real or floating-point numbers, or ASCII character information. The data types are described in
detail in the next section and summarized in tables 3-2 and 3-3.

DATA ENTRIES

A data entry is an ordered set of related data items. You specify the order of data items in an entry
when you define the data base. Data entries may be defined with at most 127 data item names,
none of which is repeated. The length of the data entry is the combined length of the data items it
contains.

DATA SETS

A data set is a collection of data entries where each entry contains values for the same data items.
For example, the CUSTOMER data set contains entries composed of the same nine data items:
ACCOUNT, LAST-NAME, FIRST-NAME, INITIAL, STREET-ADDRESS, CITY, STATE, ZIP,
and CREDIT-RATING. Normally, each data set is associated with some real world entity such as
orders, customers, employees, and so forth.

Each data set is referenced by a unique data set name. Each data set is stored in one disc file con-
sisting of storage locations called records. When you describe the data base with the data base
definition language, you specify the capacity, number of records, of each data set. Each record is
identified by a record number which can be used to retrieve the entry within it.

DATA SET TYPES AND RELATIONS

An IMAGE data set is either a master or a detail data set. Figure 2-2 illustrates the relations between
and types of six data sets in the STORE data base. Master data sets are identified by triangles and
detail data sets by trapezoids. This convention is useful when diagramming the data base design.

MASTER DATA SETS

Master data sets are characterized in the following ways:

® They are used to keep information relating to a uniquely identifiable entity; for example, infor-
mation describing a customer. The CUSTOMER data set in figure 2-3 illustrates this type of
information.

L] They allow for rapid retrieval of a data entry since one of the data items in the entry, called
the search item, determines the location of the data entry. A search item may not be a com-

pound item. In figure 2-3, the CUSTOMER data set contains a search item named ACCOUNT.
The location of each entry is determined by the value of the customer’s account number.

2-2

CUSTOMER
Master

PRODUCT
Master

SUP-MASTER
Master

DATE-
MASTER

{auto)

SALES
Detail

INVENTORY
Detail

Figure 2-2. Master and Detail Data Set Relations

® They can be related to detail data sets containing similar search items and thus serve as indexes
to the detail data set. The ACCOUNT search item in the CUSTOMER master data set is related
to the ACCOUNT search item in the SALES detail data set. The entry for a customer named
Abigail Brighton with account number 95430301 serves as an index to two entries in the SALES
data set which contain information about purchases she made.

Although there are unused storage locations in the CUSTOMER data set, IMAGE disallows any
attempt to add another data entry with account number 95430301. The search item value of each
entry must remain unique. The values of other data items in the master data set are not necessarily
unique. This is because they are not search items and are not used to determine the location of
the data entry.

DETAIL DATA SETS
Detail data sets are characterized in the following ways:

L] They are used to record information about related events; for example, information about all
sales to the same account.

® They allow retrieval of all entries pertaining to a uniquely identifiable entity. For example,
account number 95430301 can be used to retrieve information about all sales made to Ms.
Brighton.

The storage location for a detail data set entry has no relation to its data content. When a new data
entry is added to a detail data set, it is placed in the first available location.

Unlike a master data set which contains at most one search item, a detail data set may be defined
with from zero to 16 search items, The values of a particular search item need not be unique.
“Generally, a number of entries will contain the same value for a specific search item.

The SALES data set contains four search items: ACCOUNT, STOCK#, PURCH-DATE, and DELIV-
DATE. Two entries in the example in figure 2-3 have identical values for the ACCOUNT item in the
SALES data set.

2-3

MANUAL MASTER DATA SET: CUSTOMER

FIRST- CREDIT-
ACCOUNT LAST-NAME NAME INITIAL STREET-ADDRESS CITY STATE zIP RATING
12345678 | MILLER JAMES L.| 1645 MARSHALL AVENUE |GLENDALE AZ| 85301 |3.4

— 95430301 | BRIGHTON | ABIGAIL | s.| 72 E. HAMPTON DRIVE CARMEL cAl 93921 | 8.7
54777833 | GRAZIANO | ISABEL | M.| 113 SHASTA LANE SANTA CLARA| CA| 95050 | 5.8

DETALL DATA SET: SALES

ACCOUNT STOCK# QUANTITY PRICE TAX TOTAL PURCH-DATE DELIV-DATE

95430301 | 35624AB3 1 450 27 477 90575 90575 Bl
A
1 95430301 35624AC5 3 1530 33 1623 11576 11676
- 12345678 35624AB3 2 900 54 954 92775 92875 i
A
DATE
92875
AUTOMATIC MASTER DATA SET: DATE-MASTER 90575
92775

Figure 2-3. Master and Detail Data Sets Example

2-4

IMAGE stores pointer information with each detail data entry which links together all entries with
the same search item value. Entries linked together in this way form a chain. A search item is de-
fined for a detail data set if it is desired to retrieve together all entries with a common search item
value, in other words, all entries in a chain. The SALES entries with ACCOUNT equal to 95430301
form a two-entry chain. A single chain may consist of at most 65535 entries.

PATHS

A master data set search item can be related to a detail data set search item of the same type and
size. This relationship forms a path. A path contains a chain for each unique search item value.

In figure 2-3, the ACCOUNT search item in CUSTOMER and the ACCOUNT search item in SALES
link the CUSTOMER master to the SALES detail forming a path. One chain links all SALES
entries for account number 95430301, The chain for account number 12345678 consists of one
entry. Both chains belong to the same path.

gince a detail data set can contain as many as 16 search items, it can be related to at most 16
master data sets. Note that each master to detail relationship must be relative to a different detail
search item. The SALES data set is related to the CUSTOMER, PRODUCT, and DATE-MASTER
data sets.

A detail data set may be multiply indexed by a master data set. For example, SALES is indexed
twice by DATE-MASTER. The DATE search item forms one path with the PURCH-DATE search
item and one path with the DELIV-DATE search item.

Each master data set may serve as an index, singly or multiply, to one or more detail data sets. No
master data set may be involved in more than 16 such relationships. For each such relationship,
IMAGE keeps independent chain information with each master entry. This information consists
of pointers to the first and last entries of the chain whose search item value matches the master set
entry’s search item value and a count of the number of entries in the chain. This is called a chain
head. The format of chain heads is given in Section VII. For example, the DATE-MASTER data
entries each contain two sets of pointers, one for PURCH-DATE chains and one for DELIV-DATE
chains. Chain heads are maintained automatically by IMAGE.

AUTOMATIC AND MANUAL MASTERS

A master data set may be automatic or manual. These two types of masters have the following
characteristics:

MANUAL AUTOMATIC
May be stand-alone. Need not be related to any Must be related to one or more detail data sets.
detail data set.
May contain data items in addition to the search Must contain only one data item, the search
item. item.
You must explicitly add or delete all entries. A IMAGE automatically adds or deletes entries
related detail data entry cannot be added until when needed based on the addition or dele-
a master entry with matching search item value tion of relaied detail data set entries. When a
has been added. When the last detail entry re- detail entry is added with a search item value
lated to a master entry is deleted, the master different from all current search item values,
entry still remains in the data set. Before a a master entry with matching search item
master entry can be deleted, all related de- value is automatically added. Deletions of
tail entries must be deleted. detail entries trigger an automatic deletion of

the matching master entry if it is determined
that all related data chains are empty.

2-5

MANUAL AUTOMATIC

The search item values of existing master
entries serve as a table of legitimate search item
values for all related detail data sets. Thus, a
non stand-alone manual master can be used to
prevent the entry of invalid data in the related
detail data sets.

EXAMPLE. In figure 2-3, CUSTOMER is a manual master data set and DATE-MASTER is an auto-
matic master. Before the SALES entry for account 12345678 is added to SALES, CUSTOMER
must contain an entry with the same account number. However, the DATE-MASTER entries for
DATE equal to 92775 and 92875 are automatically added by IMAGE when the detail entry is
added to SALES, unless they are already in the DATE-MASTER data set.

Note that DATE-MASTER contains only one data item, the search item DATE, while CUSTOMER,
which is a manual master, contains several data items in addition to the search item.

If the SALES entry with account number 95430301 and stock number 35624 AB3 are deleted and
no other SALES entry contains a PURCH-DATE or DELIV-DATE value of 90575, the DATE-
MASTER entry with that value is deleted automatically by IMAGE.

MANUAL VS. AUTOMATIC DATA SETS
Data base designers may use:
L manual masters to ensure that valid search item values are entered for related detail entries, or

® automatic masters to save time when the search item values are unpredictable or so numerous
that manual addition and deletion of master entries is undesirable.

Whenever a single data item is sufficient for a master data set, the data base designer must decide
between the control of data entry available through manual masters and the time-savings offered
by automatic masters. For example, since DATE-MASTER is an automatic data set, erroneous
dates such as 331299 may be entered accidentally.

PRIMARY PATHS

One of the paths of each detail data set may be designated by the data base designer as the primary
path. The main reason for designating a path primary is to maintain the entries of each chain of
the path in contiguous storage locations. You accomplish this by occasionally using the
DBUNLOAD utility program to copy the data base to tape, the DBUTIL utility program to erase
the data base, and the DBLOAD program to reload the data base from the tape. When the data
base is reloaded, contiguous storage locations are assigned to entries of each primary path chain.
Therefore, the data base designer should designate the path most frequently accessed in chained
order as the primary path. This type of access is discussed in Section IV,

A primary path also serves as the default path when accessing a detail data set if no path is specified
by the calling program. This characteristic of primary paths is described with the DBGET procedure
in Section IV.

2-6

——

SORT ITEMS

For any path, it is possible to designate some data item other than the search item as a sort item. If
a sort item is specified, each of the chains of the path are maintained in ascending sorted order,
based on the values of the sort item. Different paths may have different sort items, and one path’s
sort item may be another path’s search item. Only data items of type logical or character can be
designated as sort items.

For example, chains in the SALES data set composed of entires with identical ACCOUNT values are
maintained in sorted order by PURCH-DATE. When information about sales to a particular customer
is required, the SALES data entries for that customer’s account can be retrieved in sorted order ac-
cording to purchase date. (For PURCH-DATE to be a meaningful sort item, dates must be stored in
a properly collatable form such as year-month-day rather than the order shown in preceding figures.)

The sorted order of entries is maintained by logical pointers rather than physical placement of
entries in consecutive records. Figure 2-4 illustrates the way in which sorted paths are maintained
by IMAGE. When an entry is added to a detail data set it is added to or inserted in a chain. If the
path does not have a sort item defined, the entry follows all existing entries in the chain. If the
path has a sort item, the entry is inserted in the chain according to the value of that item.

If the entry’s sort item value matches the sort item values of other entries in the chain, the position
of the entry is determined by an extended sort field consisting of the sort item value and the values
of all items following the sort item in the entry. If the extended sort field matches another extended
sort field, the entry is inserted chronologically following the other entries with the same extended
sort field value. This also occurs if the sort item is the last item in the entry and its value matches
another entry’s sort item value.

When the data base content is copied to magnetic tape using the IMAGE utility program
DBUNLOAD, the pointers that define an entry’s position in a chain are not copied to the tape.
When the data is loaded back into the data base, the chains are recreated. Therefore, entries which
were previously ordered chronologically will not necessarily be in that same order. The new
chronological ordering is based on the order in which the entries are read from the tape. The
chains of a primary path are an exception; the order of these chains is preserved if the tape was
created with DBUNLOAD in the chained mode. (Section VIII contains more information about
DBUNLOAD.)

NOTE

It is important to limit the use of sorted chains to paths consisting of relatively short
chains. It is not intended that sorted paths be used for multiple key sorts, or for sorting
entire data sets. These functions are handled more efficiently by user-written routines
or the MPE subsystem, Sort/3000.

THE STORE DATA BASE

Figures 2-5 and 2-6 illustrate the complete STORE data base. Figure 2-5 lists the data items that
define entries in each data set. The data type is in parentheses. (Data types are described in Sec-
tion III with the item part of the schema.) Paths are indicated by arrows. CUSTOMER, SUP-
MASTER, PRODUCT, and DATE-MASTER are master data sets and SALES and INVENTORY
are detail sets. Figure 2-6 shows a sample entry from each data set except DATE-MASTER for
which it shows two sample entries.

2-7

ADD ENTRY

N0 sort / \ sort item

item s
last item
sort item \
Add to end of 's not fast Sort by item
. item in entry
chain. l only.
Sort by extended @ If matches other
field. sort item, add
chronoiogicaily.
If matches other
extended field,
' add chronologically.
Data Entry: data item sort item data item data item
. J
Y
extended field
Examples: Chains (Logical order)
@ 222 8 \
333 H \ entries
111 7 | g2 inexistingchain {no sort item)
2227 | g————— newentry
@ 111 Z j——————— sortitem and subsequent item in existing chain
222 A | g———— New entry
222 B \
333 H |«————— —— sort item and subsequent item in existing chain
444 B /
@ 111 2 \
sort item and subsequent item in existing chain
222 A |
222 A [—————— new entry (matches existing extended field)
333 H \
sort item and subseqguent item in existing chain
444 B . :
@ 111 e— . .
sort item last in entry
222 |a—
222 |——————— new entry
333 .~
sort item last in entry
444 |la—

Figure 2-4. Adding an Entry to a Sorted Chain

2-8

MASTER SETS

CUSTOMER

ACCOUNT (J2)
LAST-NAME (X16)
FIRST-NAME (X10)

INITIAL (U2)
STREET-ADDRESS (X26)
CITY (X12)
; STATE (X2)
This path 2IP (X6)
Sort item CREDIT-RATING {R2)
PURCH-DATE
SUP-MASTER
SUPPLIER (X16)
STREET-ADDRESS (X26) rimary path
CITY (X12) P v
STATE (X2)
DETAIL SET 2IP (X6) DETAIL SET
SALES
ACCOUNT (U2) primary path PRODUCT INVENTORY
STOCK# (U8) *— ——— STOCK# (U8) » STOCK # (U8)
QUANTITY (1) DESCRIPTION (X20) ONHANDQTY (J2)
PRICE (J2) SUPPLIER (X16)
TAX (42) UNIT-COST (P8)
TOTAL (J2) LASTSHIPDATE (X6)
PURCH-DATE (X6) DATE‘MASTER/' oY,
DELIV-DATE (X6} DATE (X6)

Figure 2-5. STORE Data Sets and Paths

MASTER SETS

CUSTOMER

89393899

CORCORAN

CLIFFORD

X.

6105 VALLEY GREEN DR.
CARMEL

CA

93921

6.732

SUP-MASTER

H & S SURPLUS
10111 SKYLINE BLVD?

PETALUMA
CA
DETAIL SET 94952 DETAIL SET
SALES PRODUCT INVENTORY
89393899 - 66500228 » 6650D22S
66500228 BASEBALL BAT \ 29
12 H & S SURPLUS
2000 1500

120 DATE-MASTER 120775
2120 2
120575 = 120575

120775 = 120775

Note: DATE-MASTER contains
two entries in this example.

Figure 2-6. Sample Entries for STORE Data Sets
2-9

Chains of the path formed by CUSTOMER and SALES are maintained in sorted order according to
the value of PURCH-DATE. The primary path for INVENTORY is the one defined by SUP-
MASTER and the primary path for SALES is the one defined by PRODUCT.

DATA BASE FILES

Data base elements are stored in privileged MPE disc files. In addition to the root file which contains
the data base definition, other files called data files contain the data sets.

ROOT FILE

The root file is created for the data base creator when he or she executes the Schema Processor. It
is catalogued within the creator’s log-on group and account with a local file name identical to the
data base name. Thus, the name of the root file for the STORE data base is STORE. Refer to the
MPE Commands Reference Manual for more information about MPE accounts and log-on groups.

The root file is a single-extent MPE disc file: that is, the entire file occupies contiguous sectors on
the disc. It serves as a common point of entry to and source of information about the data base.

DATA FILES

There is one data file for each data set of a data hase., The size of each record and number of
records in the file are determined by the contents of the root file. The data files are created and
initialized with the IMAGE utility program, DBUTIL.

Each data file is catalogued within the same group and account as the root file. Local file names are
created by appending two digits to the local name of the root file. These two digits are assigned to
the data sets according to the order in which they are defined in the schema. For example, the
STORE data base is defined with CUSTOMER and DATE-MASTER as the first two data sets.
These data sets are in data files STOREO1 and STOREO02.

Each data file is physically constructed from one to 32 extents of contiguous disc sectors, as needed
to meet the capacity requirements of the file, subject to the constraints of the MPE file system.
Each data file contains a user label in a disc sector maintained and used by the IMAGE library pro-
cedures. The label contains structural pointers and counters needed for dynamic storage allocation
and deallocation.

RECORD SIZE. Record sizes vary between data files but are constant within each file. Each
record is large enough to contain a data entry and the associated IMAGE pointer information. The
amount of pointer information depends on the way the data set is defined. Pointer information is
described in Section X. The maximum number of records in a data set file depends on the record
size, the available disc space, and the MPE file system constraints.

BLOCKS. The records in a data file are physically transferred to and from the disc in groups. Each
group involved in a single disc transfer is called a block. The number of records in each block is
called the blocking factor. The Schema Processor determines the blocking factor during creation of
the root file. Section IlII contains more information about block size and blocking factors in the
discussion of the set part of the schema. The format of blocks is given in Section X.

2-10

P

PROTECTION OF THE DATA BASE

IMAGE prevents unauthorized persons from gaining access to the data base. 1t provides external
protection through the MPE privileged file, account, and group structures and, in addition, pro-
vides the data base designer and data base manager with devices for further protection of the data
base.

PRIVILEGED FILE PROTECTION

All IMAGE data base files are privileged files. (See the MPE Intrinsics Reference Manual for a descrip-
tion of the MPE privileged file capability.) Access by unprivileged processes or through most MPE
file system commands is not allowed. Therefore, non-privileged users are prevented from accidental-
ly or deliberately gaining access to the data base.

The use of MPE commands that permit copying of IMAGE files to tape, represent a potential breach
of data base privacy, and their use should be controlled. In particular, anyone who uses the
SYSDUMP, STORE, or RESTORE commands shauld notify the data base manager. The SYSDUMP
and STORE commands permit system supervisors, system managers and other privileged users to
copy files not currently open for output to tape. The MPE RESTORE command may purge and
replace a data base file with a different file if it has the same name and is encountered on tape.

ACCOUNT AND GROUP PROTECTION

In order to gain access to an IMAGE data base, you must be able to access the files in the account
and group in which the data base resides. The system manager and account manager manage the
security levels for accounts and groups. The system manager is responsible for creating accounts
and the account manager for creating new groups and users. (The System Manager/System Super-
visor Reference Manual contains detailed information about the maintenance of MPE accounts and

groups.)

The system and account managers can prevent members of other accounts from accessing the data
base by specifying user type AC (Account Member) for the account and group containing the data
base. They can prevent users who are members of the account, but not of the group, containing
the data base from accessing it by specifying GU (Group User) for the group. On the other hand,
they can allow access from other accounts by specifying user type ANY at both the account and
group levels.

These MPE security provisions provide an account and group level of security controlled by the
system manager and account manager.

USER CLASSES AND PASSWORDS

IMAGE allows the data base designer to control access to specific data sets and data items by defin-
ing up to 63 user clgsses and then associating the user classes with data sets and data items in read
or write class lists. This association determines which user classes may access which data elements
and the type of access that is granted.

2-11

Each user class is identified by an integer from 1 to 63 and is associated with a password defined by
the data base designer. For example, the STORE data base is defined with these user classes and
passwords:

User Class Password
11 CREDIT
12 BUYER
13 SHIP-REC
14 CLERK
18 DO-ALL

The magnitude of the user class number has no relation to the capability it grants.

When you initiate access to the data base, you must supply a password to establish your user class.
If the password is null or does not match any password defined for the data base, the user class
assigned is zero. This does not apply if you are the data base creator and supply a semicolon in
which case you have full access to all data sets in the data base. IMAGE uses the number 64 to
identify the data base creator.

READ CLASS LISTS AND WRITE CLASS LISTS. When the data items and data sets are defined
in the schema, a read class list and a write class list can be specified for each item or set. Table 2-1
contains sample lists for the CUSTOMER data set and CREDIT-RATING data item in the STORE
data base.

Table 2-1. Sample Read/Write Class Lists

READ CLASS LIST WRITE CLASS LIST

CUSTOMER 11,14 11,18

CREDIT-RATING 14 14

User class numbers included in the write class list are, by implication, included in the read class list.
Since a write class list of 14 implies that user class 14 is in the read class list, the CREDIT-RATING
read class list is redundant. However, it may be included as a reminder in the schema of the total
capability granted to user class 14.

A distinction must be made between the absence of a read and write class list and a null list. When
you specify the lists in the schema, they are enclosed in parentheses and separated by a slash, for
example, (11,14/15). A null list may be one of the following:

N Both read and write class lists are null.
(11,14) The write class list is null.

Since the existence of a write class list implies a read class list, there is no situation where only the
read class list is null.

The absence of both a read and write class list, and the parentheses and slash, yields the same result
as a read class list containing all user classes and write class list which is null. For example:

0,1,2,3,...63/)

The effect of null and absent lists is illustrated later in this section.

2-12

———

ACCESS MODES AND DATA SET WRITE LISTS

Before you can gain access to a data base, you must open it specifying a password that establishes
your user class number and an access mode that defines the type of data base tasks you want to
perform. Access modes are described in Section IV with the instructions for opening a data base. At
this time it is necessary only to note that some of the eight available access modes nullify the data
set write list. If the data base is opened in access mode 2, 5, 6, 7, or 8, all data set write class lists
are effectively null and the user class numbers in the write class lists are in the data set read class

lists only. This effect should be considered when you are designing the security scheme for the data
base.

GRANTING A USER CLASS ACCESS TO A DATA ELEMENT

Tables 2-2 and 2-3 illustrate the use of read and write class lists from two different perspectives.
Table 2-2 shows what capability user class 11 has if it appears in the lists as shown. The same rules
apply to any user class. The access mode must be as indicated.

A null read and write class list can be used by the data base creator at the data set level to deny
access to the data set by all user classes; that is, only the data base creator will be able to use the data
set.

Table 2-2. Granting Capability to User Class 11

LIST CAPABILITY LIST CAPABILITY LIST CAPABILITY

Control at (/11) Total access (/) No access (11) Controlled
Data Set or to set if to set or at item
Level (11/11) access mode absent level

1,3,0r 4 list
Contro! at (/11) Update and {/) No access (11} Read item
Data Item or read item to item or
Level (11/11) absent

list

Table 2-3 presents the same rules organized by the task which the user class is to perform. It lists
the required access modes and the security rules at both the data set and data item level. For sim-
plicity assume there are always read and write class lists even if they are the default lists (0, 1, 2, . .
63/) resulting when the lists are not actually specified in the schema (absent lists).

In summary, the data base designer can grant access to a data set in the following ways:
® Specify the user class number in the data set write class list.

1f the data base is opened in access mode 1, 3, or 4, this grants the user class complete access
to the data set. Users in this class can add and delete entries, update the value of any data
item that is not a search or sort item, and read any item, regardless of the data item read and
write class lists. A user class number must be in the data set write list in order to add and
delete entries.

2-13

Table 2-3. Enabling a User Class to Perform a Task

ADD OR DELETE
TASK READ DATA ITEM UPDATE DATA ITEM DATA ENTRIES
Access Modes 1-8 1-4 1,3, 4
If access mode 1, 3, 4: If access mode 1, 3, 4: User class in data set
User class in write list User class in write list write list.
OR OR
User class in read list and User class in read list and
Data Set pass data item security. pass data item security.
Security
Rules If access mode 2, 5-8: If access mode 2:
User class in read or write User class in read or write
list and pass data item list and pass data item
security. security.
Data Item User class in read or write User class in write list.
Security list.
Rules

Note: There are other considerations in selecting the access mode. These are discussed in Section V.

If the data base is opened in access mode 2, 5, 6, 7, or 8, this is the same as specifying the user
class number in the data set read class list only and the next rule applies.

L Specify the user class number in the data set read class list (or omit both lists entirely).
This grants the user class a type of access to the data set that is controlled at the data item level
as described below. If both read and write class lists are omitted, the user class is granted this
type of access since the lists are (0, 1, 2, 63/) by default.

L Omit the user class number from both the specified read and write class lists.

This denies the user class any type of access to the data set.

Assuming the data base designer has established control at the data set level as summarized above,
control at the data item level is established in the following ways:

® Specify the user class number in the data item read class list (or omit both lists entirely).
This grants the user class read access to the data item.

L Specify the user class number in the data item write class list.
This grants the user class the ability to update or change the data item value, if it is not a
search or sort item. Since the user class is implied to be in the read class list, the user class

can also read the item. A user class number must be in the data item write list in order to
change the value.

o Omit the user class number from both the read and write class list.

This denies the user class any type of access to the data item.

2-14

The protection of data set

phc1tly specify the user class number to allo

;.D
D.
joN)
=¥
<-r~

that class to

3
D
[o))
w
Q
o+

8
o+

1al

mak

any type of change to the data

base, but read access may be granted by default in some situations, for example, by omitting the
lists entirely. To deny read access to a data set or data item, the data base designer must specify
a list, possibly a null one, and deliberately omit the user class number.

/

NO ACCESS
TO ITEM

PN

ARE YOU
THE CREATOR?

READ/
WRITE LIST
OMITTED AT
SET?

SET
READ/WRITE
EMPTY?
N

WRITE
ACCESS
TOSET?

NO ACCESS
TO SET

READ
ACCESS
TO SET?

USER

FULL ACCESS TO
SET (READ ONLY
FOR SORT AND
SEARCH ITEMS)

YES

READ ACCESS
ONLY TO SET

NO ACCESS
TO SET

FULL ACCESS
TO SET

CLASS # ON
ITEM?

READ ACCESS
TO ITEM

READ ACCESS
TO ITEM

UPDATE
ACCESS
TO ITEM

Figure 2-7. Security Flo

2-15

w-Chart

EXAMPLES. In the STORE data base, only user classes 11 and 18 can add and delete CUSTOMER
data entries since these are the only user class numbers in the data set write list as shown in table
2-1. To do so, they must open the data base in access mode 1, 3, or 4.

User class 14 can update the CREDIT-RATING data item in the CUSTOMER data set because it
is in the data item write list and the data set read list.

Table 2-4 contains more illustrations of the effects of read and write class lists. The data base
creator and user class 9 (in access mode 1, 3, or 4) have complete access to data set 1 but only the
creator has complete access to data set 2. Complete access includes the ability to read and update
all items and add and delete entries.

Table 2-4. Sample Read and Write Class Lists

Data Set 1 (0,18,13/9) ftem Read Access Item Update Access
Data ltem A 0,13,18,9 g
Data item B (/13) 13, 9 13, 9%

* Data ltem C (/) 9* 9*
Data ltem D (/9) 9 9
Data ltem E (18/13) 13, 18,97 13,97
Data Item F (/13,18) 13, 18,9 ' 13,18, 9"
Data ltem G (12/0) 0,9 0,9"
Data Item H (13/) 13,97 9*

Data Set 2
Data Item A 0,1,...,63
Data ttem | {13/9) 13,9 9

*Only if access mode is 1, 3, or 4.
None of these items are search or sort items.

2-16

USER CLASSES AND LOCKING

IMAGE does not consider user classes when locking a data base entity. Any data set or any data item can
be referenced in a lock request by any user of a data base regardless of his or her user class.

PROTECTION IN RELATION TO LIBRARY PROCEDURES

All access to a data base is achieved through a Data Base Control Block (DBCB) and one or more User
Local Control Blocks (ULCBs) which reside in privileged data segments not directly accessible to data base
users. Since no user process can read or modify these control blocks, IMAGE guarantees protection of the
data base from unauthorized programmatic access. See the description of the DBCB and ULCB in

Section X. For more information about data segments and privileged mode, see the MPE Intrinsics
Reference Manual.

All IMAGE library procedures that structurally modify the data base execute in “critical mode.” This
defers any requested process termination while modifications are in progress. If any file system failures
occur during such data base modification, IMAGE causes process termination since the data base integrity
is suspect.

The DBCB contains buffers which are used to transfer data. All buffers whose content has been changed to
reflect a modification of the data base are always written to disc before the library procedure exits to the
calling program. This guarantees data integrity despite any program termination that might occur between
successive procedure calls.

PROTECTION PROVIDED BY THE IMAGE UTILITIES
The IMAGE utilities perform various checks to ensure data base integrity.

o They acquire exclusive or semi-exclusive access to the data base being processed. (Section IV contains
more information about types of access in the discussion of opening a data base.)

] Only the data base creator or a user supplying the correct maintenance word can execute the utilities.
The data base creator defines the maintenance word when the data base is created with the DBUTIL
utility program. (Refer to Section VIII.) In addition, anyone running the utility programs
other th in DBRECOYV must be logged on to the group in which the data base is catalogued.

. Unrecoverable disc or tape problems are treated as functional failures rather than limited successes
and result in program termination.

2-17

ST

SECTION

DEFINING A DATA BASE

Once the data base has been designed, it must be described with the data base description language

and processed by the Schema Processor to create the root file. Figure 3-1 illustrates the steps in
defining the data base.

SCHEMA
SCHEMA o PROCESSOR
(EDITOR disc file
or cards)
\4
DATA BASE DESIGN
ROOT
FILE

Figure 3-1. Data Base Definition Process

DATA BASE DESCRIPTION LANGUAGE

The data base description, called a schema, may exist in the MPE system as an ASCII file on cards,
magnetic tape, or as a catalogued disc file. Regardless of the actual physical record size of the file,
the Schema Processor reads, prints, and processes only the first 72 characters of each record. Any
remaining character positions in the record are available for your convenience, to be used for com-
ments or collating information. The data base description language is a free-format language; you

can insert blanks anywhere in the schema to improve its appearance except within symbolic names
and reserved words.

LANGUAGE CONVENTIONS

The conventions used in describing the data base language are the same as those described on the
conventions sheet at the beginning of this manual. In addition, the conventions in table 3-1 apply.

3-1

Table 3-1. Additional Conventions

Punctuation All punctuation appearing in format statements must appear exactly as shown.

Comments Comments take the form: <<comment > >

They may contain any characters and may appear anywhere in the schema
except embedded in another comment. They are included in the schema
listing but are otherwise ignored by the Schema Processor program.

Data Names Data names may consist of from 1 to 16 alphanumeric characters, the first of
which must be alphabetic. Characters after the first must be chosen from the
set:

letters A — Z, digits 0 — 9, or
+ -2 H# % & @

Upshifting All alphabetic input to the Schema Processor is upshifted (converted to upper
case), with the exception of passwords which may contain lowercase
characters.

SCHEMA STRUCTURE

The overall schema structure is:

BEGIN DATA BASE data base name;
PASSWORDS: password part
ITEMS: item part

SETS: set part

END.

The data base name is an alphanumeric string from 1 to 6 characters. The first character must be
alphabetic.

The password part, item part, and set part are described on the following pages. Figure 3-5 contains
a complete schema for the STORE data base that is used in the examples in this manual.

a—

PASSWORD PART

The password part defines user classes and passwords. Section Il contains a description of user
classes and how they are used to protect data elements from unauthorized access.

The form of the password part is

user class number |password] ;

user class number [password};

For example,

5 GLOWWORM;
61 REDHOT;

12 DOZEN;

password

user class number

where

user class number is an integer between 1 and 63 inclusive. User class numbers must be
Unigue within the password part.

password may consist of from 1 to 8 ASCII characters including lower case and

“exchudingTarriage return, semicolon, and blank. Blanks are removed
by the Schema Processor.

If the same password is assigned to multiple user class numbers, the highest numbered class is used.

It is not an error to omit the password, but the Schema Processor ignores lines containing only a
user class number.

3-3

ITEM PART

Mha itarmm nawnt A
11l 1Vl pall W

access to the item. The data set in which

The form of the item part is

item name, [sub-item count] type designator [sub-item length]
[(read class list/write class list)];

For example,

/— sub-item length

ELVIN, 3 12 (1,20/4M write class list

read class list
item type designator
name
sub-item count

where

item name is the data item name. It must be a valid IMAGE data name as
described in table 3-1. It must be unique within the item part.

sub-item count is an integer from 1 to 255 that denotes the number of sub-items
within an item. If omitted, by default it equals one. A data item
whose sub-item count is 1 is a simple item. If the sub-item count is
greater than one, it is a compound item.

type designator defines the form in which a sub-item value is represented in the com-
puter. The type designators I, J, K, R, U, X, Z, P are described in
table 3-2.

sub-item length is an integer from 1 to 255. It is the number of words, characters, or
nibbles (depending on the type designator) in a sub-item. If omitted,
it is equal to 1 by default.

read class list is a group of user class numbers between 0 and 63, inclusive, separated
by commas. User class numbers are described in Section II.

write class list is a group of user class numbers between 0 and 63, inclusive, separated
by commas.

There can be no more than 255 data items in a data base. A data item name can appear in more
than one data set definition. For example, a data item named ACCOUNT appears in both the
CUSTOMER and SALES data sets of the STORE data base.

DATA ITEM LENGTH

Each data item value is allotted a storage location whose length is equal to the product of the item’s
sub-item length and its sub-item count. The unit of measure for the length depends upon the type
designator and may be a word, byte, or nibble. A word is a 16-bit computer word, a byte is eight
bits or a half-word, and a nibble is four bits or a half-byte. Table 3-2 defines the various type
designators and specifies the unit of measure used for each.

3-4

.

ITEM PART

Table 3-2. Type Designators

WORD DESIGNATORS

J

K

R

A signed binary integer in 2's complement form.

Same as | but QUERY allows only numbers conforming to
specifications for COBOL COMPUTATIONAL data to be
entered.

An absolute binary quantity.

A real (floating point) number.

CHARACTER DESIGNATORS

NIBBLE DESIGNATOR

U An ASCII character string containing no lowercase alphabetic
characters.

X An unrestricted ASCII character string.

Z A zoned decimal format number.

p A packed decimal number.

A data item must be an integral number of words in length regardless of the type designator and its
unit of measure. In other words, data items of type U, X, or Z which are measured in bytes must
have a sub-item length and sub-item count such that their product is an even number. If a data item
is defined as U3, it cannot be a simple item and must have an even numbered sub-item count so that
the data item length is an integral number of words. Data items of type P which are measured in
nibbles must have a sub-item length and sub-item count such that their product is evenly divisible

by 4, since 4 nibbles equal 1 word.

A data item cannot exceed 2047 words in length. The entire item, whether simple or complex, is

always handled as a unit by IMAGE.

IMAGE DATA TYPES AND PROGRAM LANGUAGE DATA TYPES

The type designator, sub-item count, and sub-item length you specify for a data item defines its
length. IMAGE does not perform any conversions of data or examine the item to check its validity as
it is being added to the data base. The only data item values that IMAGE checks are those specified
as part of a lock descriptor in calls to the DBLOCK procedure. (Refer to the discussions of locking
in Section IV.) There are no rules that a specific type of data defined by a programming language

must be stored in a specific type of IMAGE data item.

Table 3-3 relates IMAGE type designators and sub-item lengths to the data types typically used to
process them in the available programming languages. Some BASIC language restrictions are noted.

3-5

ITEM PART

Table 3-3. IMAGE Type Designators and Programming Languages

COBOL FORTRAN RPG SPL BASIC
| COMPUTATIONAL INTEGER Binary INTEGER INTEGER™”
S9 to S9(4)
12 COMPUTATIONAL INTEGER™4 Binary DOUBLE INTEGER
S9(5) to S9(9)
14 COMPUTATIONAL Binary

S9(10) to S9(18)

J COMPUTATIONAL INTEGER Binary INTEGER INTEGER™"
S9 to S9(4)
J2 COMPUTATIONAL INTEGER™ 4 Binary DOUBLE INTEGER
S9(5) to S8(9)
J4 COMPUTATIONAL Binary
S9(10) to S9(18)
K1 \\LV LOGICAL LOGICAL
R2* REAL REAL REAL™™**
R4 DOUBLE PRECISION LONG LONG****
U DISPLAY CHARACTER Character BYTE String
PICTURE A
X DISPLAY CHARACTER Character BYTE String
PICTURE X
Z DISPLAY Character
PICTURE 9
P COMPUTATIONAL-3 Numeric

*Real numbers must have a length of 2 or more words; R and R1 cannot be used by IMAGE.
**BASIC integers cannot have the value -32768.
***Type LOGICAL items >32767 which are accessed as type INTEGER in BASIC programs are treated as
negative integers.
****BASIC REAL and LONG data cannot have the value 10778,

Note that the UNIT-COST item in the INVENTORY data set is easier to process with COBOL or RPG
programs than with the other languages since packed data is a standard data type in COBOL and RPG.
However, the CREDIT-RATING data item in the CUSTOMER data set is easier to process with
FORTRAN, SPL, or BASIC programs since real numbers can be arithmetically manipulated in these
languages. An actual data base may be designed so that some data sets are processed by programs
coded. in one language and others by programs coded in another language. Another data set may be
conveniently processed by programs written in any of the languages.

3-6

ITEM PART

DATA ITEMS OF TYPE P

The bits used to represent the sign of a packed decimal value may vary depending on whethe

Ulily U1l WIITLLH

value is entered using QUERY, a COBOL program, or an RPG program. Here is a summary of what
happens in each case:

the

~

° If a value is entered using QUERY, and no sign is specified, the sign is 11119, £
If a value is entered using QUERY, and a plus sign is specified, the sign is 11009, &
If a value is entered using QUERY, and a minus sign is specified, the sign is 11019, B

Tf a valiia 1a antarad niging a MINDNT vun~orwnna an
1l a VvaiutT Id TIHLTITU Udlliyg a VU DYV

the sign is 11119,
If the PICTURE clause specifies a sign and the value is positive, the sign is 11009,

L
+
X
g
-—
@]
3
3
”

If the PICTURE clause specifies a sign and the value is negative, the sign is 11019,

. If a value is entered using an RPG program, a positive or unsigned value’s sign is 11009 and a
negative value’s sign is 11019,

When you use IMAGE to locate all packed data items with a particular value (as described later in
this manual), you must be aware that IMAGE differentiates between unsigned, positive, and negative

data items with the same absolute value. For example, if you search for all data items with the
value +2, IMAGE will not retrieve any items with the unsigned value 2.

In general, IMAGE treats any two values with different binary representations as unequal
regardless of their type.

3-7

ITEM PART

MNANMDT LU AITTMADIIDQ Asnmlind i s gramnnad v DAQTIC o T'NADMD A e Aafionn anAd mamd
VUV LA (NUNDILLIW. APPLICAUIULS PLOELALILIIICQ L1 DAJLIL O FUN L RALIN Cdll aciine anu tiaill-
pulate complex numbers by using data type R2 with a sub-item count of 2, storing p

the first sub-item and the imaginary part in the second sub-item.

QUERY AND DATA TYPES. QUERY supports only a subset of the available data item types. If
you intend to use QUERY you should consult the QUERY Reference Manual for specific informa-
tion about the way QUERY handles the various IMAGE data types, including compound data
items.

Table 3-4. Examples of an Item Part

ITEMS:

Al2; << 32 BIT SIGNED INTEGER >>

MELVIN,3I (1,20/44); << COMPOUND ITEM. THREE SINGLE WORD SIGNED INTEGERS.
READ CLASSES ARE 1 AND 20; WRITE CLASS IS 44#>>

BLEVET,J; < SINGLE-WORD SIGNED INTEGER BETWEEN -9999 AND 9999.>>

COSTS, 2X10; ~<COMPOUND ITEM. TWO 10-CHARACTER ASCII STRINGS.>>

DATE, X6; << SIX-CHARACTER ASCII STRING. >>

VALUES, 20R2(1/8); << COMPOUND ITEM. 20 2-WORD REAL (FLOATING-POINT) NUM-
BERS. READ CLASS IS 1; WRITE CLASS IS 8#%>>

PURCHASE-MONTH, U8; << EIGHT-CHARACTER ASCII STRING WITH NO LOWER CASE
ALPHABETICS.>>

MASK, K2; << 32 BIT ABSOLUTE BINARY QUANTITY.>>

TEMPERATURE, 17R4; << COMPOUND ITEM. 17 FOUR WORD REAL (FLOATING-POINT}
NUMBERS. >>

SNOW*#®,Z4; <<FOUR-DIGITZONED DECIMAL (NUMERIC DISPLAY)NUMBER.>>

POPULATION,P12; << 11 DECIMAL DIGITS PLUS A SIGN IN THE LOW ORDER NIBBLE.
OCCUPIES THREE WORDS.>>

*WRITE CLASSES CAN ALSO READ.

DATA ITEM IDENTIFIERS

When you use the IMAGE procedures described in the next section, you can reference a data item by
name or number. The data item number is determined by the item’s position in the item part of the
schema. The first item defined is item one, the second is item 2, and so forth.

It is more flexible to use data item names since a change in the order of the item definitions or the
deletion of an item definition from the schema might require changes to all application programs
referencing the data items by number. Thus, to maintain program file independence it isrecom-
mended that you use data item names if possible.

3-8

. ——

SET PART(MASTERS)

The set part of the schema defines data sets. It indicates which data items listed in the item part
belong to which sets and links the master data sets to the detail data sets by specifying search items.

The form of the set part for Master Data Sets is
MANUAL
NAME: ot name M
N: § ’ AUTOMATIC
A
{ENTRY:: .
item name
E:
item name
CAPACITY: .]
C: maximum entry count;

[(path count)},

[(path count)l;

[(read class list/write class list)];

For example,

set name \ read class listj‘ :— write class list
NAME: CUSTOMER MANUAL (1,4/1,8);)
-~ item name
ENTRY: ACCOUNT(1),
h path count

LAST-NAME,
FIRST-NAME,
INITIAL,
STREET-ADDRESS,
CITY,

STATE,

ZIP,
CREDIT-RATING;

CAPACITY:20003; “*
where

set name
described in table 3-1.

MANUAL (or M)

maximum entry count

is the data set name. It must be a valid IMAGE data name as

denotes a manual master data set. Each entry within a manual master

must be created manually and may contain one or more data items.

AUTOMATIC (or A)

denotes an automatic master data set. Each data entry within an auto-

matic master is created automatically by IMAGE and contains only one

data item.

read class list

is a group of user class numbers between 0 and 63, inclusive, separated

by commas. User class numbers are described in Section I1.

3-9

SET PART(MASTERS)

write class list

item name

path count

maximum entry count

is a group of user class numbers between 0 and 63, inclusive, separated
by commas.

is the name of a data item defined in the item part. A search item de-
fined by a path count must be a simple item.

is an integer between 0 and 16, inclusive, which is used with the search
item only. It indicates the number of pathis which will be established
to various detail data sets. (See Section II for more information about
paths.) A path count must be specified for one, and only one, item in
the master set. A zero path count may be used with a manual master
data item to indicate the search item. A manual master defined in this
way is not linked to any detail data set. An automatic master has one
item that must have a path count greater than zero.

is the maximum number of entries the data set can contain, the data
set’s capacity. It must be less than 249 (8,388,608).

3-10

SET PART(DETAILS)

The form of the set part for Detail Data Sets is
(II:IIAME; set name, {gETAILI [(read class list/write class list)] ;
{ENTRY:} item name [(['] master set name [(sort item name)])],
item name [(['] master set name [(sort item name)])];
CAPACITY: .)
C: maximum entry count;
For example
set name read class list \ write class list
NAME: SALES,DETAIL (1,4/4,8); ort it "
— S item name
ENTRY: ACCOUNT (CUSTOMER (PURCH-DATE)),
% master set name
item name STOCK# (!PRODUCT) =
QUANTITY, (primary path indicator)
PRICE,
TAX,
TOTAL,
PURCH-DATE (DATE-MASTER),
DELIV-DATE (DATE-MASTER);
CAPACITY: 12000;
T~ maximum entry count
where
set name is the data set name. It must be a valid IMAGE data name as defined in
table 3-1.
DETAILor D denotes a detail data set.

read class list

write class list

item name

is a group of user class numbers between 0 and 63, inclusive, separated
by commas. User class numbers are described in Section II.

is a group of user class numbers between 0 and 63, inclusive, separated
by commas.

is the name of a data item defined in the item part. Each item defined
as a search item must be a simple item. Up to 16 items may be search
items. (See master set name for more information about search items.)

denotes a primary path. Only one path in each detail data set can be
designated as a primary path. If no path is designated as primary, the
first unsorted path is the primary path by default. If all of the paths
are sorted, the default primary path is the first sorted path.

3-11

SET PART(DETAILS)

master set name is the name of a previously defined master data set. When a master set
name follows an item name, it indicates that the data item is a search
item linking the detail set to the named master. Up to 16 search items
can be defined for a detail data set. If no data item has a master name
following it, the detail is not related to any master. In this case, the
combined length of all data items in the data set must equal or exceed
two words.

sort item name is the name of a detail data item of type U, K, or X which is part of the
data set being defined. A sort item defines a sorted path. Each entry
added to a chain of a sorted path will be linked logically in ascending

ok hhd 2 PR, P |

PLE Y PCVRE A wraly A tla msan il 1

order of the sort itemn values. If sort item’is omitted, the path order is
chronological, that is, new entries are linked to the end of chains. For
performance reasons, sorted chains should be kept short. (Refer to

page 2-17.)

maximum entry count is the maximum number of entries the data set can contain, the data
set’s capacity. It must be less than 223 (8,388,608).

MASTER AND DETAIL SEARCH ITEMS

The master and detail search items that define a path between two data sets must have identical type
designators and sub-item lengths when they are defined in the item part. Since the same data item
name may appear in more than one data set, you may use the same data item name and definition
for both the master and detail search items. For example, the data item ACCOUNT is used as the
search item in both the CUSTOMER master and SALES detail data sets.

If you want to make a distinction between the search items, however, they may be defined separately.
An example of this technique is found in the STORE data base. The search item DATE links the
DATE-MASTER data set to the SALES data set through two paths, and two search items,
PURCH-DATE and DELIV-DATE. These three data items look like this in the item part:

DATE, X6;
DELIV-DATE, X6 (/14);
PURCH-DATE, X6 (11/14),

Each data item has type designator X and sub-item length 6. The item names, read class lists, and
write class lists differ however.

Figure 3-5 at the end of this section contains the listing printed by the Schema Processor when the
STORE data base schema is processed. Refer to this figure for examples of the schema parts.

DATA SET IDENTIFIERS
Like data items, data sets may be referenced by name or number. The data set number is determined

by the set’s position in the set part of the schema. It is more flexible to use data set names, however,
in order to maintain program file independence.

3.12

OPERATING INSTRUCTIONS

SCHEMA PROCESSOR OPERATION

The Schema Processor is a program which accepts a textfile containing the schema as input, scans the
schema and if no errors are detected, optionally produces a root file. The Schema Processor prints a
heading, an optional list of the schema, and summary information on a listfile.

The Schema Processor executes in either MPE job or session mode. For further information about
sessions and jobs, refer to the MPE Commands Reference Manual. In either case, you must use the
MPE command:

:RUN DBSCHEMA .PUB.SYS

to initiate execution of the Schema Processor.

Table 3-5 lists the formal file designators and default actual file designators which the Schema
Processor uses for textfile and listfile. The input/output devices to which $STDINX and $STDLIST
refer depend upon the way your system is generated. However, $STDINX is the standard job or
session input device and $STDLIST is the standard job or session output device.

Table 3-5. Schema Processor Files

FORMALFILE DEFAULT ACTUAL
FILE USE DESIGNATOR FILE DESIGNATOR
textfile Schema and Schema DBSTEXT $STDINX
Processor commands
listfile output listing DBSLIST $STDLIST

If you want to equate these files to some other actual file designator, you can use the MPE :FILE
command. If a :FILE command is included in the job stream, you must inform the Schema Proces-
sor of this in the :RUN command in the following way:

:RUN DBSCHEMA.PUB.SYS;PARM=n

where

n=1
if an actual file designator has been equated to DBSTEXT

n=2
if an actual file designator has been equated to DBSLIST

n =3
if actual file designators have been equated to both DBSTEXT and DBSLIST.

Table 3-6 shows sample combinations of RUN and FILE commands which can be used to initiate
DBSCHEMA execution.

3-13

Table 3-6. RUN and FILE Commands, Examples

:RUNDBSCHEMA .PUB.SYS Uses all default files. Prompts for lines of
schema in session mode.

:FILE DBSTEXT=GEORGE Processes schema from a user disc textfile

:RUN DBSCHEMA PUB.SYS;PARM=1 named GEORGE.

:FILE DBSLIST;DEV=LP Outputs the listing to a line printer.

:RUNDBSCHEMA PUB.SYS;PARM=2

:FILE DBSTEXT=GEORGE Processes schema from a user textfile named

:FILE DBSLIST;DEV=LP GEORGE; outputs the listing to a line

:RUNDBSCHEMA .PUB.SYS;PARM =3 printer.

Only the first 72 characters of each textfile record are processed.

If you request a root file, and the schema is error-free, it is created, given the same name as the one
specified for the data base in the schema, initialized, and saved as a catalogued disc file.

CREATING THE TEXTFILE

A convenient method for creating the input file is to use the text editor, EDIT/3000, to enter the

commands and schema in a disc file. Figure 3-2 illustrates this process in a sample session which also

executes the Schema Processor. User input is underlined. (Refer to EDIT/3000 Reference Manual
for information about the Editor.)

The steps followed in the sample in figure 3-2 are:

1.

2.

Initiate an MPE session by logging on with the appropriate user name and account.

Initiate text editor execution. Enter an Editor ADD command in response to the first prompt.

Enter Schema Processor commands and the schema itself into records of the Editor work file.
Save the work file in a disc file named SCHEMAB. Then terminate the Editor.

Use the :FILE command to equate the formal file designator DBSLIST to the line printer and
DBSTEXT to the disc file SCHEMAB.

Initiate execution of DBSCHEMA and indicate that the textfile and listfile have been defined
in :FILE commands. When the Schema Processor has finished processing the schema it prints
the number of error messages and verifies that the root file has been created.

Figure 3-3 illustrates the order of commands and other input required when executing the Schema
Processor in batch mode. The job can also be stored in a disc file and executed from a terminal.

THE DATA BASE CREATOR

The person who creates the root file is identified as the data base creator and can subsequently
create and initialize the data base. To do so, the data base creator must log on with the same
account, user name, and group that he or she used-to create the root file and execute the IMAGE
utility program DBUTIL. This program is described in Section VIIL.

3-14

return
S T———

:HELLO USER.ACCOUNT < (1)
HP3000 / MPE III B,00,00. MON, APR 17, 1978, 2:07 PM
:EDITOR « (2)
HP32201A.7.00 EDIT/3000 MON, APR 17, 1978, 2:07 PM
(C) HEWLETT-PACKARD CO. 1976
/DD

1. SPAGE "SCHEMA OF DATA BASE B" _ @)

2. $CONTROL _ERRORS=5, BLOCKMAX=256

3. BEGIN DATA BASE Bj

59 END.

60 //
/KEEP SCHEMAB* (1)
/END

c:FILE DBSLIST;DEV=LP =

:FILE DBSTEXT=SCHEMAB

:RUN DBSCHEMA.PUB.SYS;PARM=3 =

HP32215B.00
NUMBER OF ERROR MESSAGES: 0
ROOT FILE B CREATED

END OF PROGRAM
:BYE

®

Figure 3-2. Sample Schema Creation Session

3-15

(EOJ
(EOD

/ \ ‘EOJ COMMAND

(BEGIN DATA BASE B. \

/s CONTROL
/s TITLE

SCHEMA

(s PAGE

[—
(RUN DBSCHEMA. PUB. SYS

:EOD COMMAND

SCHEMA PROCESSOR COMMANDS
{OPTIONAL)

JOB USER. ACCOUNT

\ ‘RUN COMMAND

\

:JOB COMMAND

Figure 3-3. Schema Processor Batch Job Stream

SCHEMA PROCESSOR COMMANDS

IMAGE provides several commands which you may use anywhere in the schema to specify options
available while processing the schema. The commands are: $PAGE, $TITLE, and $CONTROL.
The $ must always be the first character of the record, immediately followed by the command
name, which must be completely spelled out.

If a parameter list is included with the command, it must be separated from the command name
by at least one blank. Parameters are separated from each other by commas. Blanks may be freely
inserted between items in the parameter list.

Command records may not contain comments.

CONTINUATION RECORDS

To continue a command to the next record, use an ampersand (&) as the last non-blank character in
the current record. The following record must begin with a $. The records are combined and the $

and & are deleted and replaced by one blank character. A command name or parameter cannot be
broken by &. Characters beyond the 72nd character of each record are ignored.

3-16

SPAGE

$PAGE COMMAND

The $PAGE command causes the listfile to eject to the top of the next page, print character-strings
which you may optionally specify, and skip two more lines before continuing the listing.

The form of the $PAGE command is

$PAGE [[“character-string™], . ..]

For example,

$PAGE “STORE DATA BASE SCHEMA”, ““ VERSION 3”

/

character-string
where

character-string is a list of characters enclosed in quotes. When the command is execut-
ed, the quotes are stripped and the character-strings are concatenated.
A quote mark within a character-string is specified by a pair of quotes.

The $PAGE command is effective only if the LIST option of the $CONTROL command is on. The

LIST option is on by default until a $CONTROL command sets NOLIST. The $PAGE command
itself is not listed.

The contents of the character-strings replace those specified by a previous $PAGE or $TITLE com-
mand. If no character-strings are specified, the character-strings specified in the preceding $PAGE
or $TITLE command, if any, are printed at the top of the next page.

EXAMPLES

SPAGE "MASTER DATA SETS"&
S$,"ACCOUNTING APPLICATION"

SPAGE

3-17

STITLE

$TITLE COMMAND

The $TITLE command specifies a list of characters to be printed each time a heading is printed on a
new page. It does not cause a page eject.

The form of the $TITLE command is

$TITLE [[“character-string”], ...]

For example,
$TITLE “INVENTORY DATA BASE SCHEMA B. J. BRINDISI”
character-string
where
character-string is a list of characters enclosed in quotes. When the command is execut-
ed, the quotes are stripped and the character-strings are concatenated.
A quote mark within a character-string is specified by a pair of quotes.
The $TITLE command may be overridden by a subsequent $TITLE or $PAGE command. If no
character-string is specified, no title is printed after the command is encountered until another
$TITLE or $PAGE command specifies one.
EXAMPLE

STITLE"""QUICK""TEST DATA BASE"

3-18

SCONTROL

The form of the $CONTROL command is

$CONTROL [LIST T]

—

= - ,ROOT
NOLIS [ERRORS—HW{I [,LINES—nnnnn:, []

,NOROOT

o 1 [1
,BLOCKMAX=nnrmJ ’

For example,

$CONTROL NOLIST, ERRORS= 5, LINES=62, NOROOT, BLOCKMAX=256,TABLE

NOLIST

ERRORS=nnn

LINES=nnnnn

ROOT

NOROOT

BLOCKMAX=nnnn

TABLE

NOTABLE

hnn hnnnn nnnn

causes each source record of the schema to be printed on the listfile.

specifies that only source records with errors be printed on the listfile.
An error message is printed after these records.

gets the maximum number of errors to nnn. If more than nnn errors
are detected, the Schema Processor terminates. nnn may have a value
between 0 and 999, inclusive. The default value is 100.

sets the number of lines per page on the listfile to nnnnn which can be
between 4 and 32767, inclusive. The default value is 60 if listfile is a
line printer and 32767 if it is not one.

causes the Schema Processor to create a root file if no errors are
detected in the schema.

prevents the Schema Processor from creating a root file.

sets the maximum physical block length (in words) for any data set in
the data base. nnnn may have a value between 128 and 2048, inclusive.
The default value is 512. This is an important parameter and is dis-

cussed in greater detail below.

causes the Schema Processor to write a table of summary information
about the data sets to the listfile device if no errors are detected.

suppresses the TABLE option.

3-19

$CONTROL

The default parameters are underlined. If no $CONTROL command is used the results are the same
as if the following $COMMAND command is used:

$CONTROL LIST,ERRORS=100,LINES=60, ROOT,BLOCKMAX=512,TABLE
(or 32767)
The parameters may be placed in any order but must be separated by commas.
SELECTING THE BLOCK SIZE

The data set records are transferred from the disc to memory in blocks. (The block format is
described in Section X.) When you specify a maximum block size with the $CONTROL command
you should consider.

® efficient disc space utilization
® minimum disc access

® program execution time which can be affected by the size of a privileged data segment in which
IMAGE maintains a Data Base Control Block. (Refer to Section IV for a definition of the
DBCB.) Buffers in the DBCB must be as large as the largest block of the data base, therefore,
the larger the block, the larger this data segment must be.

The Schema Processor determines the number of data records which fit in a block. Larger blocks
minimize disc access by enabling the transfer of more records at one time. In selecting a block size,
the following considerations may apply:

o If the applications using the data base will be run as batch jobs at times when few other users
are competing for system resources, particularly memory space, you may choose to use large
blocks. This will reduce the freguency of disc access if:an application is accessing data sets
serially, or along chains whose members are physically contiguous or close.

e If the application programs are large and will be run while many users are operating in session
mode, large blocks and the resulting large DBCB data segment may cause the progra:n to
execute more slowly since a larger area of memory is required to execute the program. In
this case, you may need to decrease the block size. If the application programs are small, this
may not be necessary.

Other factors may depend on the application requirements and a certain amount of tuning is some-

times necessary to determine the best block size. In general, the default block size of 512 words
yields reasonable performance and should be changed only with good reason.

3-20

SCHEMA PROCESSOR OUTPUT
The Schema Processor prints the following heading on the first page of the listing:

product identification product name

PAGE 1 HEWLETT=PACKARD 322158,00 IMAGE/3000 MON, APR 3, 1978, 4132 PM

If your standard output device ($STDLIST) is different from listfile, an abbreviated product identifi-
cation is also printed on $STDLIST. Subsequent pages of listfile are headed by a page number, the
data base name if it has been encountered, and the title most recently specified by a $TITLE or
$PAGE command.

If the LIST option is active, a copy of each record of the schema is sent to the listfile. However, if
the textfile and listfile are the same, as for example they are when you enter the schema source from
your terminal in session mode, the records are not listed. If you are entering the schema in this way,
the Schema Processor prompts for each line of input with a >.

SUMMARY INFORMATION

After the entire schema has been scanned, several types of summary information may be printed on
the listfile.

L If not all of the items defined in the item part are referenced in the set part, and if no errors are
encountered, the message:

UNREFERENCED ITEMS: list of items

is printed to the listfile. The list includes all items defined but not referenced in a data set.
Although they are not considered errors, these extraneous items should be removed to reduce
the size of the tables in the root file and the size of the extra data segment used by the library
procedures.

® If no errors are detected in the schema and if the TABLE option has been selected, the Schema
Processor prints a table of summary information about the data sets. Figure 3-4 contains a
sample printout of this information. Table 3-7 describes the information contained in the
summary. The NOTABLE parameter of the SCONTROL command suppresses printing of
this table.

DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC
NAME CNT CT LGTH REC FAC LGTH SPACE
EMPLOYEE M 4 1 7 17 500 30 512 72
PROJECT-MASTER M 2 1 10 20 75 19 382 15
LABOR D 4 2 10 18 10024 28 506 1436
TOTAL DISC SECTORS INCLUDING ROOT: 1532

Figure 3-4. Data Set Summary Table
3-21

Table 3-7. Data Set Summary Table Information

DATA SET The name of the data set. CAPACITY The maximum number of entries
NAME allowed in the data set. For detail
data sets, this number may differ
from the number of entries speci-
TYPE A for automatic, M for manual, or fied in the schema itself, because
D for detail the capacity of each detail is
adjusted to represent an even mul-
tiple of the blocking factor (see
FLD CNT The number of data items in each below).
entry of the data set.
BLK FAC The number of media records
PT CT Path count. For a master data set, which are blocked together for
this is the number of paths speci- transfer to and from the disc.
fied for the data set search item.
For a detail data set, it is the
number of search items defined for BLK LGTH The total length in words of the
each entry of the data set. physical block as defined in
BLK FAC. This includes the
media records and a bit map.
ENTR The length in words of the data Bit maps are discussed in Section
LGTH portion of the data entry (not in- X.
cluding any of the IMAGE /3000
pointers or other structure infor-
mation associated with a data DISC The amount of disc space {in 128-
entry). SPACE word sectors) occupied by the
MPE file containing the data set.
MED REC The total length in words of a
1medla r'ecord of the data set. This TOTAL DISC SECTORS
ength includes the entry length
INCLUDING ROOT: nnnn
plus any of the IMAGE/3000 .
. . . The total number of 128-word disc
pointers associated with the . . .
. sectors which will be occupied by
data entry. Media records are .
discussed in Section X. the data base, when created using
the DBUTIL program.

Two lines of summary totals are printed on the listfile. For example:

NUMBER OF ERROR MESSAGES: 0
ITEM NAME COUNT: 22 DATA SET COUNT: 6

The error count includes both errors in the schema and in the Schema Processor commands
The error count is also sent to $STDLIST, if it is different from the listfile.

If no schema syntax or logical errors are encountered, a third line is printed. The form of this
line is:

ROOT LENGTH: r BUFFER LENGTH: TRAILER LENGTH: ¢
ROOT LENGTH is the length in words of the body of the root file. BUFFER LENGTH is the
length in words of each of the data buffers which IMAGE allocates in an extra data segment (the
DBCB) for use in transferring data set blocks to and from disc. TRAILER LENGTH is the length
in words of an area in the extra data segment used by IMAGE to transfer information to and from a
calling program’s stack.

3-22

® If no errors are detected and the ROOT option is active, the following message is sent to the
listfile:

ROOT FILE data base name CREATED

data base name is the name given in the BEGIN DATA BASE statement in the schema.
SCHEMA ERRORS
When the Schema Processor detects an error it prints a message to the listfile. If the LIST option is
active, it is printed immediately after the offending statement. If NOLIST is active, the current line
of the schema is printed and then the error message.
Schema Processor error messages are explained in Appendix A. The root file is not created if any of
the listed errors are detected. However, the Schema Processor attempts to continue checking the
schema for logical and syntactical correctness.
One error may obscure detection of subsequent errors, particularly if it occurs early in a data set.
It may be necessary to process the schema again after the error is corrected to find subsequent
errors. Conversely, some errors early in the schema can generate subsequent apparent errors which

will disappear after the original error has been corrected.

If schema errors prohibit creation of the root file, the following message is sent to the listfile, and
to $STDLIST if it is not the same as the listfile:

PRECEDING ERRORS — NO ROOT FILE CREATED.
A few conditions, including the number of errors exceeding the total number allowed, cause imme-
diate termination of the Schema Processor without the normal summary lines. In this case, the

following message is printed:

SCHEMA PROCESSING TERMINATED.

SCHEMA PROCESSOR EXAMPLE

Figure 3-5 contains the listfile output printed when the schema of the sample STORE data base is
processed. The data base has 5 passwords and contains 23 data item definitions and 6 data set
definitions. The Schema Processor summary information is printed following the schema.

3-23

PAGE 1 HEWLETT-PACKARD 32215B.0l1.IMAGE/3000: DBSCHEMA TUE, JUN 27

SCONTROL LINES=56
BEGIN DATA BASE STORE:

PASSWORDS::
14 CLERK; << SALES CLERK >>>
12 BUYER; << BUYER - RESPONSIBLE FOR PARTS INVENTORY >>
11 CREDIT; << CUSTOMER CREDIT OFFICE >>
13 SHIP-REC; << WAREHOUSE - SHIPPING AND RECEIVING >>
18 DO-ALL; << FOR USE BY MR. OR MS. BIG >>
ITEMS: << IN ALPHABETICAL ORDER FOR CONVENIENCE >>
ACCOUNT, J2 ; << CUSTOMER ACCOUNT NUMBER >>
BINNUM, 22 (/13); << STORAGE LOCATION OF PRODUCT >>
CITY, X12 (12,13,14/11); << CITY >>
CREDIT-RATING, R2 (/14); << CUSTOMER CREDIT RATING >>
DATE, X6 ; << DATE (YYMMDD) >>
DELIV-DATE, X6 (/14); << DELIVERY DATE (YYMMDD) >>
DESCRIPTION, X20; << PRODUCT DESCRIPTION >>
FIRST-NAME X10 (14/11); << CUSTOMER“GIVEN NAME >>
INITIAL U2 (14/11); << CUSTOMER MIDDLE INITIAL >>
LAST-NAME, X1l6 (14/11); << CUSTOMER SURNAME >>
LASTSHIPDATE, X6 (12/); << DATE LAST RECEIVED (YYMMDD) >>
ONHANDQTY, J2 (14/12); << TOTAL PRODUCT INVENTORY >>
PRICE, J2 (1l4/); << SELLING PRICE (PENNIES) >>
PURCH-DATE, X6 (11/14); << PURCHASE DATE (YYMMDD) >>
QUANTITY, I (/14); << SALES PURCHASE QUANTITY >>
STATE, X2 (12,13,14/11); << STATE -- 2 LETTER ABBREVIATION >>
STOCK#, ug ; << PRODUCT STOCK NUMBER >>
STREET-ADDRESS, X26 (12,13,14/11); << NUMBER AND STREET >>
SUPPLIER, X16 (12,13/); << SUPPLYING COMPANY NAME >>
TAX, J2 (14/); << SALES TAX (PENNIES) >>
TOTAL, J2 (11,14/); << TOTAL AMOUNT OF SALE (PENNIES) >>
UNIT-COST, P8 (/12); << UNIT COST OF PRODUCT (PENNIES) >>
Z21P, X6 (12,13,14/11); << ZIP CODE >>
SETS:
NAME: CUSTOMER,MANUAL(14/11,18); << CUSTOMER MASTER INFO >>
ENTRY: ACCOUNT(1l),
LAST-NAME,
FIRST-NAME,
INITIAL,
STREET-~ADDRESS,
CITY,
STATE,
ZIP,
CREDIT-RATING;
CAPACITY: 200;
NAME: DATE-MASTER,AUTOMATIC; << HANDY-DANDY DATE INDEX >>

ENTRY: DATE(3):;
CAPACITY: 211;

Figure 3-5. STORE Data Base Schema
3-24

PAGE 2 STORE

NAME: PRODUCT,MANUAL(14,13/12,18); << PRODUCT INDEX >>
ENTRY: STOCK#(2),

, DESCRIPTION;
CAPACITY: 300;

NAME: SALES,DETAIL(11/14, i8:; << CREDIT PURCHASE INFO >>
ENTRY: ACCOUNT(CUS”OMER(PURCP*DATE)),
STOCK# (PRODUCT),
QUANTITY,
PRICE,
TAX,
TOTAL,
PURCH=-DATE (D
DELIV-DATE (DA
CAPACITY: 500;

MAST

E- R
E-MAST

AT ER);
T ER);

NAME: SUP-MASTER,MANUAL(13/12,18); << SUPPLIER MASTER INFO >>
ENTRY: SUPPLIER(1),

STREET-ADDRESS,

CITY,

STATE,

Z1P;
CAPACITY: 200;

NAME: INVENTORY,DETAIL(12,14/13,18); << PRODUCT SUPPLY INFO >>
ENTRY: STOCK# (PRODUCT) ,
ONHANDQTY,
SUPPLIER(! SUP-MASTER), << PRIMARY PATH >>
UNIT-COST,
LASTSHIPDATE (DATE-MASTER),
BINNUM;
CAPACITY: 450;

END.
DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLX DISC
NAME CNT CT LGTH REC FAC LGTH SPACE
CUSTOMER M 9 1 41 51 200 10 511 84
DATE-MASTER A 1 3 3 23 211 22 508 44
PRODUCT M 2 2 14 29 300 13 378 75
SALES b 8 4 19 35 504 14 491 148
SUP-MASTER M 5 1 31 41 200 12 493 72
INVENTORY D 6 3 20 32 450 15 481 124

TOTAL DISC SECTORS INCLUDING ROOT: 560

NUMBER OF ERROR MESSAGES: 0
ITEM MNAME COUNT: 23 DATA SET COUNT: 6
ROOT LENGTH: 729 BUFFER LENGTH: 511 TRAILER LENGTH: 256

ROOT FILE STORE CREATED.

Figure 3-5. STORE Data Base Schema (Continued)
3-25

BASIC

TV IV ARADY IO

ASIC EXAMPLES

To simplify your access to an IMAGE data base through BASIC language programs, it is recom-
mended that you use the BIMAGE interface procedures provided with the IMAGE software. These

u nrd ey TAAAMNTY Tom o3 X242
routines convert all parameter byte addresses to word addresses as required by IMAGE. In addition

to calling the necessary IMAGE procedure, the BIMAGE procedures perform the following functions
for your convenience:

® automatically pack into a buffer a list of ex
procedures

® automatically unpack from a buffer to a list of BASIC variables the values of items returned by
DBGET or the values returned by DBINFO

® automatically update the logical length of string variables to which data is transferred from
the data base to reflect the length of the string actually transferred.

Table 6-1 lists the BIMAGE interface procedures with the IMAGE procedures to which they corre-

spond. The parameters are described in table 6-2. The corresponding IMAGE procedure parameter
is listed next to the BIMAGE parameter.

Table 6-1. BIMAGE Procedure Calls

BIMAGE CORRESPONDS TO:
XDBOPEN (8BS, W$, mode, status(™)) DBOPEN
XDBPUT (B$,{ dD$} , mode, status(*),{/L$}, writelist) DBPUT
XDBFIND (BS, { 5’5} mode, status(*){ $} {A$} DBFIND
a

XDBGET (B$, {D$} , mode, status(*),{/L$}, readlist, {:$ }) DBGET

D$ fLey
XDBUPDATE (B$,{d } mode, status(*), U , writelist) DBUPDATE

D$ *
XDBDELETE (8%, Jd mode, status(*)) DBDELETE
XDBLOCK (B$,{descrip/ist} , mode, status(*)) DBLOCK

D% "
XDBUNLOCK (8BS, dJ , mode, status({”)) DBUNLOCK

D$ "

XDBCLOSE (8BS, , mode, status(™)) DBCLOSE
XDBINFO (8%, {5$ } , mode, status(*), readlist) DBINFO
XDBEXPLAIN (status(*)) DBEXPLAIN
XDBERROR (status(*), M$ {.length]) DBERROR

6-41

BASIC

BIMAGE**
A$
a

8%

D$
d

descriplist

$

LS

length

M$

mode

(03]

g

status
ws

readlist

writelist

IMAGE
argument
argument

base

dset
dset

qualifier

item
item

list

list

length

buffer

mode
qualifier
qualifier
status
password

buffer

buffer

May be any string expression.
May be a numeric expression or numeric array of any data-type.

Must be a simple string variable. Value should not be altered between calls to
XDBOQOPEN and XDBCLOSE.

May be any string expression.

May be a type-INTEGER expression.”

Has same form as writelist. You should ensure that once BASIC has concatenated the
component vai |ab!co, the result is a valid lock descﬂpu}l Hist (UI set name) as defined

for DBLOCK. (Parameter ignored for DBLOCK modes 1 and 2)
May be any string expression.
May be a type-INTEGER expression. *

May be any string expression or a string array. If it is a string array, all of the string
elements are concatenated to form one string whose length may not exceed 255
characters. The concatenated string must form a syntactically correct /ist parameter.
Commas must be placed appropriately.

May be an array of type INTEGER.

Must be a simple or subscripted type-INTEGER variable (if not, parameter is ignored.)
Parameter is optional but if present, total length of IMAGE message is returned.
Value may exceed length of message by BIMAGE procedure if M$ is too small and
message is truncated. Not needed when M$ is a string variable.

Should be a simple or subscripted string variable without substring designators.
If message is larger than M$, message is truncated on the right. Logical length

of M$ is set to length of message returned by BIMAGE and may not be equal to
length if message is truncated.

Must be type-INTEGER expression.*

May be any string expression.

May be a type-INTEGER expression.*

Must be a type-INTEGER array containing at least ten active elements.
May be any string expression.

Has form similar to item list of BASIC READ or MAT READ statement. May
consist of one or more string or numeric simple or subscripted variables or arrays
separated by commas. String variables with substring designators and the “FOR-
loop’’ construct are not permitted.

Has form similar to item list of BASIC PRINT or MAT PRINT statement. May
consist of one or more string or numeric expressions or arrays separated by
commas. 'FOR-loop” not permitted. Substring designators are permitted.

* See discussion of type-INTEGER expressions as parameters.

** Note that if you specify an array as a parameter you must obey BASIC syntax rules and append parentheses and

asterisks, for example, L$(*,*) or A(*).

6-42

BASIC

Refer to the IMAGE procedure descriptions in Section V for details regarding the purpose of a pro-
cedure and its parameters as well as available options.

BIMAGE provides some extensions to the IMAGE procedure calling sequences to simplify your
access to the data base:

° BIMAGE allows you to enter a list of expressions in place of the buffer parameter. The
list is automatically packed into or unpacked from a temporary buffer constructed by
the BIMAGE procedures. This facility is also available to construct lock descriptor lists.

L String or numeric expressions are accepted for many parameters. For example, the dset
parameter may be a string expression when specifying the data set by name or a numeric
expression when specifying the data set by number.

STRING VARIABLES

The physical length of a string variable determines the number of characters (bytes) read by the
XDBGET procedure and the logical length of a string variable determines the number of characters
written by the XDBPUT and XDBUPDATE procedures. Thus, you should ensure that the physical
length of a string variable specified in a DIM or COM statement exactly matches the size of the
item to be read by a call to XDBGET.

On the other hand, the same string variable can be used to write items of varying sizes. Substring
designators should be used to ensure that the actual string passed to XDBPUT or XDBUPDATE
fills the item to be written. For example, if the item is 8 characters long, and substring S$(3) is

2 characters long, S$(3,10) or S$(3;8) fills the item with the S$(3) substring and appends 6 blanks.

If the string variable is an array, the length of each string element or of the concatenated string
elements should correspond to the length of the item or sub-item to be written. You can ensure
this by specifying substring designators when assigning values to elements of the string array in
your BASIC program.

TYPE-INTEGER EXPRESSIONS AS PARAMETERS

Since BASIC treats integral numeric constants as type-REAL, expressions involving constants can-
not be passed directly to a type-INTEGER parameter of a BIMAGE procedure. You can define a
function such as the following to ensure that a type-INTEGER expression is passed:

10 DEF INTEGER FNI(X)=X
When a procedure call is made, the function is used in this way:

50 CALL XDBLOCK(B$, D$, FNI(expression),S(*))
The function FNI converts expression to type-INTEGER.
THE READLIST, WRITELIST, AND DESCRIPLIST PARAMETERS
When specifying string expressions in a readlist, writelist, or descriplist, each string expression should
correspond to a data item or sub-item, or groups of items or sub-items in the case of string arrays.
You should not specify several string expressions as the source or destination of one item or
sub-item. The transfer of strings to or from the data base always begins on a word boundary of

the buffer. Therefore, writing from or reading into two odd-length strings is not the same as
writing or reading into one even-length string.

6-43

BASIC

THE STATUS PARAMETER

If the status parameter is a type-INTEGER variable, a condition word is returned in the first word
and the second word is set to zero if status is at least a two-element array. The condition word will
have a value equal to those listed for the corresponding IMAGE procedure and, in addition, may
contain one of the conditions listed in table 6-3.

If the status parameter is not type-INTEGER, the BIMAGE procedures cannot return a condition

word for the common error: failure to declare the status variable type-INTEGER. This error will

usually result in the BASIC message UNDEFINED VALUE the first time the status array contents
are examined.

Table 6-3. Additional BIMAGE Condition Word Values

EXCEPTIONAL CONDITIONS: PROCEDURES:

51 Insufficient stack for temporary buffer. XDBGET,XDBPUT, —_
XDBINFO,XDBUPDATE

52 Invalid number of parameters.

. All procedures except
53 Invalid parameter. XDBERROR and XDBEXPLAIN
54 status array has less than 10 elements.

OPEN DATA BASE

10 DIM B$[8],PS$[8]
20 INTEGER S[10],M

30 B$=" STORE;"
40 INPUT "ENTER PASSWORD: ",PS$[1l;8]
50 INPUT "ENTER ACCESS MODE (l1-8): ",M -

60 CALL XDBOPEN(BS$,P$,M,S[*])
70 IF S[1]<>0 THEN 9300

(code to use data base)

9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBEXPLAIN(S[*])
9320 STOP

In this example, the STORE data base is opened in the access mode entered by the user and with a
user class number corresponding to the password entered by the user and stored in the P$ string. If
the password is less than 8 characters the P$ string is padded with blanks. The first word of the
status array, S, is tested to determine whether the procedure executed successfully. If not, an error
message is printed.

6-44

BASIC

ADD ENTRY

10 DIM BS([8],PS[8],AS$[8],Cs[20]
20 INTEGER S[10},M,M1 After data base opened, first word of B$
30 BS=" STORE;" contains data segment number.
40 INPUT "ENTER PASSWORD: " ,PS$[1l;8]
50 INPUT "ENTER ACCESS MODE (3,4): ",M
60 GOTO M OF 70,70,90,90
70 PRINT "CANNOT ADD ENTRIES IN THIS ACCESS MODE"
80 GOTO 50
90 CALL XDBOPEN(BS,PS$,M,S[*])
100 IF S[1]<>0 THEN 9300
110 INPUT "ENTER STOCK# OR / TO TERMINATE: ",AS$({1;8]
120 IF AS[1l,1]="/" THEN GOTO 9900
130 INPUT "ENTER DESCRIPTION: ",CS$[1;20]
140 Ml=1
150 CALL XDBPUT(BS,"PRODUCT;",M1,S5[*],"@;",AS[1;8},C${1;20])
160 IF S[1]}<>43 THEN 190
170 PRINT "DUPLICATE STOCK NUMBER"
180 GOTO 110
190 IF S[1]<>16 THEN 220
200 PRINT "DATA SET FULL"
210 GOTO 9900
220 IF S[1])<>0 THEN 250
230 PRINT "NEW PRODUCT HAS BEEN ENTERED"
240 GOTO 110
250 IF S[1]1=-23 THEN 290
260 PRINT "DBPUT FAILURE"
270 CALL XDBEXPLAIN(S[*]):
280 GOTO 9900
290 PRINT "YOUR PASSWORD DOES NOT ALLOW YOU TO ADD ENTRIES"
300 GOTO 9900

9300 (code same as example above)

9900 (close data base)

This sample code adds an entry to the PRODUCT manual master data set. Note that the B$ string
used to open the data base is the base parameter in this call. It should not be changed after the
call to XDBOPEN since this call saves a data segment number in the first word of B$. The list of
items to be added is specified as @; which indicates that values are specified for all items in the
entry. The values for the STOCK# and DESCRIPTION data items are stored in A$ and C$.
Sample values are “7474Z742Z” and “ORANGE CRATEAAAAAAAA”.

In the example, the condition word of the status array is tested for a value of 43, indicating that an
entry with the specified STOCK# search item value already exists in the data set, or 16, indicating
that the data set is full, or —23, indicating that the user’s password does not grant write access to the
data set.

If an entry is to be added to a detail set, the program may first check to see if the required entries
exist in the manual masters linked to the detail set. Values must be provided for all search items and
the sort item, if one is defined, of a detail data set entry.

6-45

BASIC

READ ENTRY (SERIALLY)

10 DIM Bs(8],P$([8],D1$[14]1,L1$[20],S51$[16],52$(2]
20 INTEGER S[10],M,M1,M2

30 B$=" STORE;"

40 M1=1

50 INPUT "ENTER PASSWORD: ",PS$[1l;8]

60 INPUT "ENTER ACCESS MODE (1-8): ",M

70 CALL XDBOPEN(BS,P$,M,S[*])

80 IF S{1}<>0 THEN 9300

200 M2=2
210 DIS="SUP~MASTER;"
220 LIS$S="SUPPLIER,STATE;" =« readlist

230 CALL XDBGET(BS$,D1l$,M2,S[*],L1s$,S1s$,S2s,"")
240 IF S[1]<>11 THEN 270

250 GOSUB 900

260 GOTO 230

270 IF S[1]1<>0 THEN 320

280 PRINT "SUPPLIER= ",S1§$,"STATE= ",S2$

290 INPUT "CONTINUE (Y OR N)? ",XS$

300 IF X$[1,1]="Y" THEN GOTO 230

310 GOTO 9900

320 IF S[1]=-21 THEN 360

330 PRINT "DBGET FAILURE"

340 CALL XDBEXPLAIN(S[*])

350 GOTO 9900

360 PRINT "YOU DO NOT HAVE ACCESS TO THIS DATA"
370 GOTO 9900

900 (routine to rewind data set)

9300 (same as XDBOPEN example)

9900 (close data base)

To read the next entry of the SUP-MASTER data set, a mode of 2 is used. This directs the XDBGET
(and DBGET) procedure to perform a forward serial read. In the example, the list in the L1$ string
specifies two data items to be read. After returning to the calling program, the S1$ string contains
the STOCK # data item value and 52$ contains the DESCRIPTION data item value. The argument
parameter is ignored if mode equals 2, therefore, a null string may be used for this parameter.

If an end-of-file is encountered the condition word is set to 11. In this case, if the user wants to
continue, the routine rewinds the data set and tries the read again. A rewind routine is shown later
in the examples of the XDBCLOSE procedure. The rewind reinitializes the current record pointer
so that the next request for a forward serial read will read the first entry in the data set.

If the user’s password does not allow read access to the data, a condition word of —-21 is returned.

6-46

BASIC

READ ENTRY (CALCULATED)

10 piM BS([8],P$[8],C$[20],508([8]

20 INTEGER S[10],M1,M

30 B$=" STORE;"

40 Ml=1

50 DEF INTEGER FNI (X)=X

60 INPUT "ENTER PASSWORD: ",P$[1;8]

70 INPUT "ENTER ACCESS MODE (1-8): ",M

80 CALL XDBOPEN(B§,P$,M,S[*])

90 IF S[1]<>0 THEN 9300

300 INPUT "ENTER STOCK# OR / TO TERMINATE: ",S0$[1;8]
310 IF S0$[1,1]="/" THEN GOTO 9900

320 CALL XDBGET(B$,"PRODUCT ",FNI(7),S[*],"DESCRIPTION;",CS,S0$)
330 IF S[1]<>17 THE GOTO 360

340 PRINT "NO SUCH STOCK NUMBER"

350 GOTO 300

360 IF S[1]=0 THEN GOTO 410

370 IF S[1]=-21 THEN 430

380 PRINT "DBGET FAILURE"

390 CALL XDBEXPLAIN(S[*])
400 GOTO 9900

410 PRINT S0S$,C$

420 GOTO 300
430 PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TO DATA REQUESTED"
440 GOTO 9900

9300(same code as XDBOPEN example)

9300(close data base)

To locate the PRODUCT data set entry which has a STOCK # search item value equal to the one
entered in S0$ by user, a calculated read is used. The mode is 7 and the item to be read is
DESCRIPTION. After XDBGET returns control to the calling program, the description is in C$.
If no entry exists with the specified STOCK# value, the condition word is 17. If the user does
not have read access to the requested data, a condition word of -21 is returned.

6-47

BASIC
READ ENTRY (BACKWARD CHAIN)

BITSTS
10 DIM BS[8],PS$S[8],I1$([6],A$[8],A1$[16]
20 INTEGER S[10],M1,M,Mé6
30 B$=" STORE;"
40 M1l=1
50 M6=6
60 INPUT "ENTER PASSWORK: ",PS$[1;8]
70 INPUT "ENTER ACCESS MODE (1-8): ",M
80 CALL XDBOPEN(BS$,PS$,M,S[*])

T a1 nNn mrr QNN
90 IF S[{1]1<>0 THEN 9300

300 INPUT "ENTER LASTSHIPDATE (YYMMDD) OR E TO EXIT: ",I1S$[1;6]

310 IF I1$[1,1]="E" THEN GOTO 9900

320 CALL XDBFIND(B$,"INVENTORY " ,M1,S[*],"LASTSHIPDATE;",I1l$)

330 IF S[1]<>17 THEN GOTO 360

340 PRINT "NO SHIPMENTS ON THAT DATEF

350 GOTO 300

360 IF S[1]=0 THEN GOTO 410

370 IF S[1]=-21 OR S[1]=-52 THEN 480 ~
380 PRINT "DBFIND FAILURE"

390 CALL XDBEXPLAIN(S[*])

400 GOTO 9900

410 CALL XDBGET(BS$,"INVENTORY;",M6,S[*],"STOCK#,SUPPLIER;",AS$,ALS$"")
420 IF S[1]1<>14 THEN GOTO 450

430 PRINT "NO MORE SHIPMENTS ON THIS DATE"

440 GOTO 300

450 IF S[1}<>0 THEN GOTO 500

460 PRINT AS,AlS

470 GOTO 410

480 PRINT "YOUR PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS TO DATA"
490 GOTO 9900

500 PRINT "DBGET FAILURE"

510 GOTO 390

9300 (same as XDBOPEN example)

9900 (close data base)

First the XDBFIND procedure is called to determine the location of the first and last entries in the
chain. The call parameters include the detail data set name, the name of the detail search item used
to define a path with the DATE-MASTER data set, and the search item value of both the master
entry containing the chain head and the detail entries making up the chain. The search item value
is requested from the user and stored in I11$, for example, the user may enter 760314.

If no entry in the DATE-MASTER has a search item value entered, the condition word will be 17. —_
If the user does not have read access to the data, a condition word of —21 or =52 is returned.

6-48

BASIC

I the XDBFIND procedure executes successfully, a call to the XDBGIET procedure with a mode
parameter of 6 reads the last entry in the chain. Subsequent calls to XDBGET with the same mode

read backward through the chain until the first entry has been read. If the condition word is 14,

the beginning of the chain has been reached and no more entries are available, or there are no entries
in the chain.

Il an entry is successfully read, the program uses the STOCK # value stored in A$ and the SUPPLIER

value stored in A1$ and then returns to statement 350 Lo read another entry in the chain.

UPDATE ENTRY

10
20
30
40
50
60
70
80
90
100
200
210
220
230
240
250
260
270
280
290

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

9310

9900

DIM BS[8],P$[8],D1$[12],12$[16],A55[26],595[16]
INTEGER S[10],M

B$=" STORE;"

DEF INTEGER FNI(X)=X

D1$="SUP-MASTER "

I2$="STREET~-ADDRESS;"

INPUT "ENTER PASSWORD: ",P$[1;8]

M=3

CALL XDBOPEN(BS$,PS$,M,S[*])

IF S[1]1<>0 THEN 9300

INPUT "ENTER SUPPLIER OR / TO TERMINATE: ",S9$[1:;16]
IF S9$[1,1]1="/" THEN GOTO 9900

CALL XDBGET(BS$,D1S$,FNI(7),S[*],I2$,A5%,59%)

IF S[1]==21 THEN GOTO 290

IF S[1]=0 THEN GOTO 310

IF S[1]=17 THEN GOTO 430

PRINT "DBGET FAILURE"

CALL XDBEXPLAIN(S[*])

GOTO 9900

PRINT &

"YOUR PASSWORD OR ACCESS MODE DOES NOT ALLOW ACCESS TO THIS DATA"
GOTO 9900

PRINT "CURRENT ADDRESS: ",A5S

INPUT "ENTER NEW ADDRESS: " ,A5S$[1;26]

CALL XDBUPDATE(BS$,D1S$,FNI(1),S[*],I2$,A5S)

IF S[1]<>42 THEN GOTO 370

PRINT "YOU ARE NOT ALLOWED TO ALTER THIS ITEM"
GOTO 200

IF S[1]1=0 THEN 410

PRINT "DBUPDATE FAILURE"

CALL XDBEXPLAIN(S[*])

GOTO 9900

PRINT "ADDRESS CHANGED"

GOTO 200

PRINT "NO SUCH SUPPLIER"

GOTO 200

(same as XDBOPEN example)

(close data base)

6-49

BASIC

Before an entry can be updated it must be located. In this example, the entry is located with a
calculated XDBGET that reads the STREET-ADDRESS item in the SUP-MASTER data set. The
entry is located by using the SUPPLIER search item with a value supplied by the user. If the read
is successful, the current address is printed and the application program user is prompted for the
new address which is moved into A5$. The XDBUPDATE procedure is then called to alter the
STREET-ADDRESS data item in the entry.

If the current user class number does not allow this item to be altered or the access mode does not
allow updates to take place, the condition word 42 is returned.

A null list can be used with DBGET to locate an entry to be updated.

DELETE ENTRY (WITH LOCKING AND UNLOCKING)

10 DIM B$[8],P$[8],D1$[12],S98[16],A5S([16]

20 INTEGER S[10],M2,M1,M4

30 B$S=" STORE;"

40 DEF INTEGER FNI(X)=X

50 D1$="SUP-MASTER "

60 INPUT "ENTER PASSWORD: ",PS$[1l;8]

70 M1=1

80 M2=2

85 M4=4

90 CALL XDBOPEN(BS,PS$,M1,S[*])

100 IF S[1]1<>0 THEN 9300

110 INPUT "ENTER SUPPLIER OR / TO TERMINATE: ",S9$[1;16]
120 IF S9s$[1,1]="/" THEN GOTO 9900

130 CALL XDBLOCK(BS,D1$,M4,S([*])

140 IF S[1]<=0 THEN 170

150 PRINT "DATA SET IS BUSY. TRY AGAIN LATER."
160 GOTO 9900

170 IF S[1]=0 THEN 210
180 PRINT "DBLOCK FAILURE"

190 CALL XDBEXPLAIN(S[*])

200 GOTO 9900

210 CALL XDBGET(BS$,D1S$,FNI(7),S[*],"SUPPLIER;",A5$,5S9S)
220 IF S[1]=0 THEN 330

230 IF S[1l]=-21 THEN 280

240 IF S[1]1=17 THEN 310

250 PRINT "DBGET FAILURE"

260 CALL XDBEXPLAIN(S[*])

270 GOTO 290

280 PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TO DATA SET"
290 GOSUB 9000

300 GOTO 9900

310 PRINT "NO SUCH SUPPLIER"

320 GOTO 430

330 CALL XDBDELETE(BS,D1S$,FNI(1),S[*])

340 IF S[1]1<>44 THEN GOTO 370

6-50

BASIC

350 PRINT "INVENTORY ENTRIES EXIST, SUPPLIER CANNOT BE DELETED"
360 GOTO 430
370 IF S[1]=0 THEN GOTO 420
380 IF S[1]=-23 THEN 280
390 PRINT "DBDELETE FAILURE"
400 CALL XDBEXPLAIN(S[*])
410 GOTO 9900
420 PRINT "SUPPLIER DELETED"
430 GOSUB 9000
440 GOTO 110
9000 CALL XDBUNLOCK(BS$,"",M1,S[*])
9010 IF S[1]=0 THEN RETURN
9020 PRINT "DBUNLOCK FAULURE"
9030 CALL XDBEXPLAIN(S[*])
9040 GOTO 9900
9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBEXPLAIN(S[*])
9320 STOP
9900 CALL XDBCLOSE(BS$,"",FNI(l),S[*])
9910 IF S[1]=0 THEN STOP
9920 PRINT "DBCLOSE FAILURE"
9930 GOTO 9310
9999 END

In the example above, the program calls XDBLOCK to lock the SUP-MASTER data set.
Since mode 4 is used, the program must check the condition word when DBLOCK returns
control to verify that the data base is locked and the calling program has exclusive access. If
this is so, the condition word is 0.

If the data is successfully locked, the program performs the necessary data base operations.

In this case, it deletes an entry. Before the entry can be deleted, the current record of the data
set must be that of the entry to be deleted. This record may be located by calling XDBGET.
The program may request the name of the supplier whose record is to be deleted and use
XDBGET in calculated mode to locate the appropriate entry. If entries in the INVENTORY
data set exist that have the same SUPPLIER value as the entry to be deleted, the condition
word is set to 44 and the entry is not deleted.

After the entry is deleted the data set is unlocked by XDBUNLOCK.

A null list can be used with DBGET to locate an entry to be deleted.

6-51

BASIC

REQUEST DATA SET INFORMATION

10 DIM B$[8],P$[8]

20 INTEGER S[10],D2[7],M

30 B$=" STORE;"

40 INPUT "ENTER PASSWORD: ",PS$[1;8]

50 INPUT "ENTER ACCESS MODE (1-8): ",M
60 CALL XDBOPEN(BS,P$,M,S[*])

70 IF S[1]<>0 THEN 9300

300 M=203 ‘

310 CALL XDBINFOR(BS$,"",M,S[*],D2[*])
320 IF S[1]=0 THEN 350
330 CALL DBEXPLAIN(S[*])
340 GOTO 9900

350 PRINT "YOU HAVE ACCESS TO";D2[1];"DATA SETS AS FOLLOWS:"
360 FOR I=2 TO D2[1]+1
370 PRINT D2[I]

380 NEXT I

390 GOTO 9900

9300 (same as XDBOPEN example)
9900 (close data base)

The procedure call in this example obtains the numbers of data sets that are available to the current
user class by specifying mode 203. If the user class number is 12 and the procedure executes
successfully, the D2 array contains:

D2(1) 4 Access to 3 data sets.

D2(2) 2 Read access to data set 2.

D2(3) -3 Modify access to data set 3

D2(4) -5 and data set 5.

D2(5) 6 Read and possibly update access to data set 6.

6-52

BASIC

REWIND DATA SET

10
20
30
40

210

900
910
920
930
940
950
960

DIM B$[8],P$[8],D1$[14],L1$(20],81$([16],528(2]
INTEGER S[10],M,M1,M2

B$=" STORE;"

M1=1

(open data base)

D1$="SUP-MASTER;"

(read data set serially)

INTEGER M3

M3=3

CALL XDBCLOSE(B$,D1$,M3,S[*D
IF S[1]=0 THEN RETURN

PRINT "DBCLOSE FAILURE"

CALL XDBEXPLAIN(S[*])

GOTO 9900

9900 (close data base)

To rewind the SUP-MASTER data set, a call to DBCLOSE is made with mode equal to 3. The
dynamic status information in the Data Set Control Block for SUP-MASTER is reset, including
the current record number. If a serial read request encounters an end-of-file, this call resets the
current record to the beginning of the data set and another serial read request reads the first entry
in the data set.

CLOSE DATA BASE

10 DIM B$[8],P$[8]

20 INTEGER S[10],M

30 B$=" STORE;"

40 DEF INTEGER FNI(X)=X

9900 CALL XDBCLOSE(BS,"",FNI(1),S[*])
9910 IF S[1]=0 THEN STOP

9920 PRINT "DBCLOSE FAILURE"

9930 GOTO 9310

9999 END

This call closes the data base. It is issued after the program has completed all data base operations
and before program termination.

6-53

BASIC

N4 T

PRINT ERROR

10 DIM BS[8]
20 INTEGER S[10]

O O

310 CALL XDBEXPLAIN(S[*])
32

>TOP

(]
wn

A call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of

the status array, S. This is the routine which is called to display the status in the preced

MOVE ERROR TO BUFFER

10 DIM BS$S[8],PS[8],MS[72]
20 INTEGER S[10],M,M1
30 B$=" STORE;"
40 M1=1
50 INPUT "ENTER PASSWORD: ",PS$[1l;8]
60 INPUT "ENTER ACCESS MODE (1-8): ",M
70 CALL XDBOPEN(BS,PS$,M,S[*])
80 IF S[1}1<>0 THEN 9300
90 PRINT "DATA BASE OPENED"
100 GOTO 9900
9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBERRORS(S[*],MS$)
9320 PRINT MS
9330 STOP

In this example, a call to DBERROR returns one of the messages appropriate to the current condi-
tion word. For example, if the condition word is équal to 16, the message returned in M$ is THE
DATA SET IS FULL. Note that the length parameter need not be included since the logical length
of M$ is set by XDBERROR.

6-54

