SECTION Vil
Debugging

BASIC/3000 provides commands that allow a program to be debugged while it is running. The
path of execution through a program and the change in value of variables can be traced. The dy-
namic nesting structure of a program can be displayed; variable values can be displayed and modi-
fied; tracing can be changed; and the execution sequence can be altered.

Note that once a program has been saved for RUNONLY (see Section ‘II), it cannot be debugged.

7-1

TRACE/UNTRACE Commands

The TRACE command is used to turn on the tracing of selected variables, both simple variables
and arrays, function references (with or without tracing their local variables), programs called
with INVOKE or CHAIN, and statements of the current program. UNTRACE turns off tracing.

Form

The commands have these forms:

TRACE [trace element list]
UNTRACE [trace element list]

The trace elements are optional and include variables (including those local to functions), functions,
labels, a range of labels (label-label), and the keyword PROG.

Variables include simple variables, string variables, string arrays, and numeric arrays. Numeric ar-
rays are distinguished from simple variables by a (*) or (*,*) following the array name. Examples of
variables:

A, B(2) numeric variable

B3, C$(*) string variable

C$(*,*) string array

A(*) one-dimensional numeric array

A(*,*) two-dimensional numeric array

Functions can be specified by the function name only or the name followed by a list of local vari-
ables in parentheses. For example:

FNA numeric function name

FNB(A$,B(*)) local string variable and local numeric array; FNB is not traced, only the
local variables.

Labels are statement labels consisting of integers in the range 1 through 9999.

Label-label stands for all statements between, and including the statements identified by the two
labels. For example:

80 the statement at label 80
100-150 all statements between 100 and 150 inclusive

PROG is a keyword to specify that trace information be printed when a CHAIN or INVOKE is
performed.

7-2

Explanation

The BASIC/3000 Interpreter keeps track of all items specified in TRACE commands. A range of
labels traces all statements within the range. Any change to a variable’s value, any reference to a
function, or any execution of a statement causes tracing information to be printed. Any change in
the value of an array element, except in MAT operations, causes that element to be printed. To
trace a function, only the function name is specified. If a list of local variables is included with the
function name, changes in their values are traced but not execution of the function. If PROG is
specified in a TRACE command, information is printed whenever a program is accessed through an
INVOKE or CHAIN statement and also when returning to an invoking program (see Section X,
Segmentation).

TRACE with no parameters lists the items currently being traced.

UNTRACE turns off tracing of the items specified. When tracing is turned off for a function it is
not turned off for any local variables. When tracing is turned off for variables individually, it does
not turn off tracing for the function. For instance, UNTRACE FNA turns off tracing of the func-
tion but not of its local variables if they were specified in a TRACE command; UNTRACE FNA
(A$) turns off tracing of the local variable A$ but not of the function FNA.

UNTRACE with no parameters stops all tracing specified by previous TRACE commands.

The specified tracing occurs only when the program is executed. When trace output occurs, the
following information is printed:

@ label variable = value
or
@ programname label variable = value
These outputs are printed as a result of a trace of a function or variable.
The programname is printed if the current program has been named.
*TRACE label
or

*TRACE programname label

These outputs are printed as a result of a trace of a label or labels.

7-3

Examples

The program below includes a one-dimensional array, a simple variable, and a function call. This
program will be used for succeeding TRACE and UNTRACE examples.

12 DIM X([5]

20 LET Q=5

3@ READ (FOR Nzl TO 5,XIND

40 DATA 2.5,75.6,36.2,15,7,120
5@ PRINT FND(X[%1,Q)
213 DEF FND(A[* 1,INTEGER W)
220 REAL I,J

230 J=1
249 FOR I=2 TO N
250 IF ACI)>A0J]) THEN J=I

260 NEXT 1
278 RETURN J
283 FNEND
>TRACE Q,X (%)
sRUN
@20 Q=5
@38 X[11=2,5
@33 X(21=75.6
@39 X[31:=36.2
@30 X[41=15.17
@38 Xi51=12¢
5

The command TRACE Q,X(*) traces the variable Q and prints its value at line 20. This is the only
value printed for @ since its value is not subsequently changed. Then the five values of the numeric
array X(*) are printed with the line at which they assume these values.

The program output in this case is 5, the result returned by the function FND.
This trace is turned off by:

>UNTRACE
UNTRACE without a trace element list turns off all current traces.

In the trace below of the function FND and its local variables A(*) and N, the only trace output is
for the function FND; its local variables are not traced since their values are unchanged by program
execution.

>TRACE FND,FNDCA (*x),N)
>RUN

@FND

@278 FND(FAND)=S

5

7-4

A trace of statement execution is printed when a label or range of labels are used as parameters:

>TRACE 50,200-230

>RUN
* TRACE
@FND
* TRACE 227
* TRACE 239
*TRACE 24¢
*TRACE 250
* TRACE 268
*TRACE 2580
*TRACE 260
*TRACE 250
* TRACE 268
*TRACE 250
*TRACE 260
*TRACE 27¢
@278 FND(FND)=5
5
*TRACE 2180

Because of the FOR statement in line 240, lines 250 and 260 are repeated 4 times. Following exe-

cution of line 270, control passes to line 50 where the value returned by the function is printed.
The program then reaches line 210 and halts.

The command TRACE with no list prints the current trace element list.

>TRACE
FNDCA[=1,N),50,200~280.

Following the UNTRACE command, the TRACE command has nothing to list.

>UNTRACE

>TRACE

>
The use of TRACE PROG is illustrated by the following segmented programs. ALPHAZ1 calls pro-
gram BETA1 which in turn calls GAMMAL. Because the INVOKE statement is used, control re-
turns to ALPHA1 (see Section X, Segmentation).

7-5

GAMMA 1
18 REM PROGRAM GAMMAI
2@ PRINT "IN GAMMAL -~ RETURN TO BETAIL"™

BETAI

18 REM PROGRAM BETAI

20 INVOKE "GAMMALI™

25 PRINT "BACK IN BETAl -- RETURN TO ALPHAL"
ALPHAL

12 REM PROGRAM ALPHAI

2@ INVOKE “"BETAL"™

25 PRINT "BACK IN ALPHAl =-- TERMINATE"

>TRACE PROG

>RUN

ALPHA L

*TRACE, INVOKE: BETAI

*TRACE, INVOKE: GAMMAL

IN GAMMAL =-- RETURN TO BETAL
*TRACE, REVERT: BETAI

BACK IN BETAl =~- RETURN TO ALPHAIL
*TRACE, REVERT: ALPHAL

BACK IN ALPHAl -~ TERMINATE

7-6

BREAK/UNBREAK Commands

The BREAK command allows the user to specify points where the execution of a program should
be interrupted (or “broken’’). A break point is a label, a range of labels, or any point at which a
transfer is made from one program to another (through CHAIN, INVOKE, or END). UNBREAK
turns off break points.

Forms
The forms of the commands are:

BREAK

BREAK breakpoint list
UNBREAK

UNBREAK breakpoint list

The items in the optional breakpoint list include: label, label-label, and PROG. They are specified
in the same way as for TRACE.

Explanation

BREAK or UNBREAK can be specified before the program is run or when it is broken. When the
program is run, execution suspends just before execution of a statement whose label is in the break-
point list. If PROG is specified, execution suspends after a program is brought into the user’s work
area by CHAIN, INVOKE, or END but before the program is run (see Section X, Segmentation).

When execution suspends as a result of a breakpoint, the statement label about to be executed is
printed in the form:

*BREAK label
*BREAK programname label

The programname is listed only if the program has been named.

After this output, a > is printed to indicate that a command can be entered. The legal commands
during a break period are listed below.

Execution is resumed with the RESUME or GO command.
BREAK with no parameters causes all the current breakpoints to be listed.

UNBREAK with no parameters deletes all current breakpoints. With parameters, UNBREAK de-
letes those breakpoints specified by the labels in the breakpoint list.

7-7

LEGAL COMMANDS DURING BREAK
Certain commands may be used only during a break period:

ABORT
CALLS
FILES
GO
RESUME
SET
SHOW

These commands are described in this section.
Of the remaining commands, only these are legal during a break period:

BREAK/UNBREAK
CATALOG
CREATE

DUMP

EXIT

KEY

LENGTH

LIST

SPOOL

SYSTEM
TRACE/UNTRACE
XEQ

If the user enters any other command, BASIC/3000 responds:
ILLEGAL WHILE RUN SUSPENDED. DO YOU WANT TO ABORT?

The user enters anything starting with “Y” to abort the current program and carry out the com-
mand, or enters anything else not to abort the program and to ignore the command.

During a break period, the user can type ABORT to terminate his current run and return to BASIC
command mode where all commands are legal.

7-8

The commands SCRATCH and GET (illegal during a break period) will clear all traces and break-
points. RUN programname will also clear traces and breakpoints, but a RUN without the program-
name parameter will not.

The CHAIN and INVOKE commands clear traces and breakpoints except when PROG is used.
INVOKE saves traces and breakpoints and restores them upon return to the invoking program.

Examples

18 DIM A[5,12)
20 MAT READ A
30 DATA 10,20,390,48,50,120,200,300,400,582
40 DATA 110,120,130,140,150,218,228,233,248,250
5@ DATA 310,320,338,340,358,410,420,430,440,452
60 DATA 510,5208,538,540,558,612,620,630,648,652
78 DATA 718,728,733,740,758,812,820,833,843,852
88 RESTORE 50
96 READ (FOR X=1 TO 3,(FOR Y=1 TO 12,4(X,Y1))
180 END

>BREAK 30,100

>sRUN

*BREAK 38

>SHOW ACl,1),A(5,18)

All,1)=10

ALS,181=850

>G0

*BREAK 100

>SHOW AC1,1),A(5,12)

ALl,1):=312

AL5,101=850

>UNBREAK

>ABORT

During the breakpoints, the command SHOW (described later in this section) causes the values of
the specified elements to be printed. After the program has run with two breakpoints at line 30
and 100, the breakpoints are deleted with UNBREAK. ABORT is used to return the user to the
BASIC command mode. He may then run the program without breakpoints.

In the example below, the same program is named BRK1 and then run with the same breakpoints.
The breakpoints are listed with BREAK during the second breakpoint and then deleted individual-
ly. GO finishes execution of the program after which the user is returned to BASIC command
mode and runs the program without breakpoints:

10
29
30

58
60

80
S92
100

DIM A[5,18)

MAT READ A

DATA 10,20,38,48,50,100,200,300,402,500

DATA 118,120,1308,148,150,2108,220,230,240,252
DATA 310,320,330,340,350,410,420,438,442,450
DATA 518,528,538,548,5508, 610, 620,638, 642, 652
DATA 718,720, 73@,740,758,810,828,830,840,850
RESTORE 58

%ESD (FOR X=1 TO 3,(FOR Y=1 TO 18,AlX,Y1))

>NAME BRKI1

>BREAK 30,1020
>RUN

BRK1

*BREAK BRK! 38

>SHOW AL, 1)
All,1])=10

>G0

*BREAK BRK1 123
>SHOW A(l,1)
All,11=312
>UNBREAK 108
>BREAK

33,

>UNBREAK

>G0

>RUN

BRK 1

7-10

ABORT Command

The ABORT command is legal only during a break period; it terminates the suspended program
and returns the user to a normal state where all commands are legal.

Form

ABORT

Explanation

When ABORT is specified, the break period is ended and the run terminated. The user can now
enter any command legal during normal BASIC execution, but cannot enter the commands legal
only during a break period. '

Examples

12
29
32
49
590
S0
18
83
S
189

DIM AL5,121

MAT READ A

DaTA 10,20,30,42,50,108,2082,382,442,528

DATA 112,128,133,148,150,218,2208,238,242,252
DATA 310,3208,330,343,350,413,420,430,448,452
DATA 510,520,538,542,552,618, 628,630, 643,552
DATA 718,728,732, 148,752,81¢,828,832,343,854
RESTORE 50

READ (FOR Xzl TO 3,(FOR Y=1 TO 12,40X,Y1))
END

>BREAK 30,120

>RUN

*BREAK 38
>SHOW A(5,12)
Al5,121=852
>ABORT

7-11

RESUME or 6O Command

The RESUME command ends the interactive debugging mode and resumes the suspended program.
This command is legal only during a break period. GO may be used instead of RESUME; there is
no difference between them.

Form

RESUME
RESUME label
GO

GO label

Explanation

A RESUME by itself restarts the program at the location printed when the program break occurred.
A RESUME with a label restarts execution at that location, unless that location transfers into or out
of a function from the current location.

The label parameter for RESUME or GO is not allowed when the break occurs as a result of press-
ing CTRL Y. RESUME or GO without a label may be used to resume suspended operation as a
result of a CTRL Y break.

Examples

Using the same program, a breakpoint is specified for line 30 where the array A is displayed. During
this break another breakpoint is specified for line 100 and then the suspended program is resumed
at line 80 (RESUME 80). At the next breakpoint, array A is again displayed. GO is typed after
the final breakpoint to complete execution of the program:

7-12

10
20
30
40
50
60
70
89
S92
100

DIM AL5,10)

MAT READ A

DATA 10,20,30,40,50,108,2008,300,422,500

DATA 110,120,130,140,152,2108,220,230,240,252
DATA 310,320,338,340,350,418,423,438,440,450
DATA 518,528,530,540,559, 610,620,633, 648, 6592
DATA 718,720,738, 748,750,818,820,8308,843,850
RESTORE 50

READ (FOR X=1 TO 3,(FOR Y=l TO 18,A[X,Y1))
END

>BREAK 30

>RUN

*BREAK 30

>SHOW A(Cl,1),A(3,18),A(5,18)
All,11=10

AL3,181=450

Al5,101=850

>BREAK 120

>RESUME 882

*BREAK 100

>SHOW AC(l,1),A(3,10),A(5,19)
All,1)=310

Al3,101-850

Al5,101=850

>G0

>

Note that GO 80 could have been used instead of RESUME 80, and RESUME instead of the final

GO with no effective change to this example.

7-13

SHOW Command

The SHOW command prints the values of the items specified; this command is legal only during
a break period.

Form
The form of SHOW is
SHOW item list
The list can include:
. variables (numeric or string)
o array elements
° entire arrays (name (*) for one-dimensional array or name (*,*) for two-dimensional array)

. local variables (function name (variable list))

Explanation

An array is printed as in the MAT PRINT statement (see Section III), except that undefined values
are noted with the word UNDEFINED. The variable list in parentheses that follows a function
name can include only local variables of that function. The function must be active; that is, the
function must have been called and not be completed.

Examples

The example below specifies breakpoints for line 20 and lines 70 through 90. Since line 80 is not
executed, breaks actually occur in lines 70 and 90. SHOW commands are used to print the con-
tents of the variable X$ at the break in line 70 and the contents of the local variable A$ in function
FNRS$ at the break in line 20. At the break in line 90, an attempt is made to show the contents of
the non-existent array and of an existing array that has not been given any values. A new break-
point at line 100 is specified where the SHOW command is used to print the previously undefined
array B. GO continues execution of the program until it ends.

7-14

12 DEF FNR$(AS)

20 IF LENCA$)<=1 THEN RETURN AS$
38 RETURN FNRSCASIZD+ASI1,11]
40 FNEND

50 DIM X$151,Bl2,5)
60 X3$="12345"

70 1F FNR$(X$)="54321" THEN PRINT "YES"

80 ELSE PRINT X$

924 MAT READ B

120 DATA 12,20,30,48,50,68,70,808,50, 130
112 END
>BREAK 28,708-592

>RUN
*BREAK 70
>SHOW X%
X$="12345"
>GO

*BREAK 280

>SHOW FNR$AS)
FNR$:AS="12345"
>UNBREAK 20

>G0
YES
*BREAK 90
>SHOW A (%)

A DOES NOT EXIST
>SHOW B (k%)
Bl*]

UNDEFINED UNDEFINED UNDEFINED UNDEFINED
UNDEFINED UNDEFINED UNDEFINED UNDEFINED

>BREAK 100
>G0

*BREAK 189
>SHOW B (k4 %)
Bl]

12 20 30 40 FY’/
64 10 80 S@ 102

>GO0

7-15

UNDEFINED
UNDEFINED

SET Command

The SET command allows the user to set any variable to a constant value; this command is legal
only during a break period.

Form
The form of the SET command is
SET item = constant

The items to be set can include variables and array elements and local variables, specified as in the
SHOW command, except that the form using asterisks may not be used.

Examples

19 DIM XI5

20 MAT READ X

30 DATA 273.1,765.5,795.1,654.9,195.7
40 PRINT FND(X(*1,5)

58 END
210 DEF FNDCA[*],INTEGER N)
229 REAL I,d

230 J=1l
240 FOR I1=2 TO N
250 IF A[I1>AlJ]) THEN J=1

260 NEXT 1
2790 RETURN J
288 FNEND
>BREAK 30

>RUN
*BREAK 30
>SHOW X (1)
X(11=273.1

>SET X(1)=950.2
>SHOW X (1)
X{11=950.2

>G0

}

The result of the program is changed by setting the first element in the array X to a higher value
than the other elements.

7-16

When the break points are removed, the program runs with the data read from the DATA state-
ment in line 30:

>U NBREAK
>RUN
S

7-17

FILES Command

The FILES command is legal only during a break period. It prints a list of all the files that are cur-
rently open in the executing program. The list is by name and internal file number (see Section
VIIIL, Files).

Form

FILES

Explanation

When FILES is typed during a break, a list of the file numbers specified by the FILES statement
in the executing program is printed. The numbers are in ascending order and each is followed by a
file name if the file is open, by an asterisk if the file number is reserved but not yet open, or by

#n whevre n is the file number of a file opened in another program that called the current program
with INVOKE. The file name of an open file is qualified by the group name and account name.

Examples

In the first example, FILES specified in the break at line 30 shows four open files. The break at
line 40, after the ASSIGN statement closed file number 5, shows only three files currently open:

13 REM PROGRAM ONE
20 FILES A,B,*,C,D
3@ ASSIGN *,5
40 END
>BREAK 30
>RUN
*BREAK 30
>FILES
1 AJBASIC.LANG
2 B.BASIC.LANG
I %
4 C.BASIC.LANG
5 D.BASIC.LANG
>BREAK 40
>G0
*BREAK 42
>FILES
A JBASIC.LANG
B.BASIC.LANG
*
C.BASIC.LANG
*

Vo NN -

7-18

In this example, program FIRST calls program SECOND with INVOKE. BREAK PROG is used
to specify a breakpoint when control goes to SECOND and again when control reverts to FIRST.
In SECOND, three local files are open, one of which is internal file #2 or the file B. It also shows
the internal files A and B that were opened in FIRST and remain open following the INVOKE.
The FILES command at the break upon return to FIRST shows that only the two files local to
FIRST are open and that file #3 has been reserved:

SECOND
19 REM PROGRAM SECOND
20 FILES C,#2,D
30 END
FIRST
12 REWM PROGRAM FIRST

20 FILES A,B,*
3@ INVOKE "SECOND"
>BREAK PROG

>RUN

FIRST

*BREAK, INVOKE: SECOND
>FILES

I A.BASIC.LANG

2 B..BASIC.LANG

S x

4 C.BASICLLANG

5 #2

D.BASIC.LANG
LOCAL FILES START AT 4
>G0
*BREAK, REVERT: FIRST
>FILES
1 ABASIC.LANG
2 B.BASIC.LANG
3 %
>G0

>

7-19

CALLS Command

The CALLS command is legal only during a break period. It prints a list of all functions that have
not been completed, and of all programs that have been called with INVOKE but have not been
completed by END. This list is in reverse chronological order starting with the most recent.

Forms

CALLS

Examples

At the breakpoint for statement 40, the CALLS command shows that function FNN called FNM.
Note that functions are listed in reverse chronological order:

PROGI
19 DEF FNMCA,B)=SGN(A)Y*FNNC(ABS(A),ABS(B))
20 DEF FNN(A,B)
30 X=A-INTC(A/B)x*B
40 RETURN X
58 FNEND
60 PRINT FNM(-4,3)
>BREAK 49
>RUN
PROG!
*xBREAK PROG! 432
>CALLS
FNN
FANM

7-20

- In the following example, ALPHA2 uses INVOKE to call BETA2; BETAZ2 uses CHAIN to call
GAMMAZ2. Because GAMMAZ2 returns to ALPHAZ2, not BETA2, a CALLS command entered
during the break in GAMMAZ2 shows that ALPHA2 invoked GAMMAZ2:

GAMMAZ
10 REM PROGRAM GAMMAZ2
20 PRINT "IN GAMMA2 -- RETURN TO ALPHA2"

BETA2
12 REM PROGRAM BETAZ2
20 CHAIN "GAMMAZ®

— ALPHAZ2
12 REM PROGRAM ALPHAZ2
20 INVOKE "BETA2"
25 PRINT "BACK IN ALPHA2 -- TERMINATE"
>BREAK PROG
>RUN
ALPHAZ2
*BREAK, INVOKE: BETA2
>G0
— *BREAK, CHAIN: GAMMA2
>CALLS
INVOKED BY ALPHAZ

7-21

Each of the following three programs contains at least one function definition and function call.
Function FNA in program ALEF1 calls FNB wherein ALEF1 calls BET1 with an INVOKE state-
ment. At the breakpoint in line 40 of GIMEL, function FNE calls FNF. The CALLS command
entered during the breakpoint in GIMEL shows a complete history of all nested function calls and
INVOKE statements in reverse chronological order:

GIMEL
1?2 REM PROGRAM GIMEL
28 DEF FNE(X)=FNF(X)
3@ DEF FNF({X)
40 PRINT "IN GIMEL"™
50 RETURN @
60 FNEND
78 X=FNE(4)

BETI
10 REM PROGRAM BETI
29 DEF FNC(X)
30 INVOKE "GIMEL"
40 RETURN 2
60 FNEND
78 X=FNC(3)

ALEF]
1@ REM PROGRAM ALEFI
28 DEF FNA(X)=FNB(X)
38 DEF FNB(X)
40 INVOKE "BETI"
50 RETURN 2

62 FNEND
78 X=FNA(2)
>BREAK PROG
>RUN
ALEF]
*BREAK, INVOKE: BETI
>G0
*BREAK, INVOKE: GIMEL
>BREAK 40
>G0
*BREAK GIMEL 482
>CALLS
FNF
FNE
INVOKED BY BET!
FNC
INVOKED BY ALEF!
FNB
FNA

7-22

WAIT Command

The WAIT command suspends the BASIC Interpreter with the PAUSE intrinsic for a specified period
of time. The command has the following form:

WAIT timel [,timeZ2]
where “timel” and ‘““time2’’ have the following form:

[[hours:] minutes:] seconds

“seconds’” may be a floating-point value; it must be less than 60 if “minutes” is present. ‘“Minutes”
and “hours” must be integral values. ‘“Minutes’ must be less than 60 if “hours” is specified.

1f only ““timel” is specified, the Interpreter suspends for the indicated period of time. If “time2” is
also specified, the Interpreter suspends for a random time period between ‘“‘timel” and ““time2”’.

This command is useful for scheduling events during a benchmark.

WARNING: This command cannot be terminated with control-Y.

APR 1978 793

