SECTION IV
Variable Types

In addition to the floating-point real numbers used so far in this manual, BASIC/3000 allows three
additional representations of data: integer, long real, and complex. Including real, these four num-
ber types apply to variables, arrays, constants, expressions, assignments, functions, input and output.

4-1

Type Statements

The type statements allocate space for variables and arrays and assign them a specific data type. Any
particular variable or array can appear only in one type statement or DIM statement.

Form
The form of the type statement is
type typespec list

where type is either INTEGER, REAL, LONG, or COMPLEX. The typespec list includes variables
and arrays to be assigned the data type of type. Arrays are defined in the same form as in the DIM
statement (Section III).

Explanation

A simple variable or array which does not appear in a type statement is automatically type REAL.
The explicit typing of variables in a REAL statement is, therefore, redundant, except within a func-
tion body, where all local variables must be declared in order to distinguish them from variables of
the same name outside the function. Real numbers are represented as 32-bit quantities consisting
of a sign, exponent, and fraction. The range of real numbers is + (10-77 1 077y with approximately
6 to 7 digits of precision.

Variables which appear in an INTEGER statement hold integers. The range of integers is -32767 to
327617.

Variables which appear in a LONG statement hold long numbers. Long representation is a 64-bit
quantity with sign, exponent, and fraction. The range is identical to real, but long has a precision
of 16 to 17 digits.

Variables which appear in a COMPLEX statement hold numbers in complex form. Complex repre-

sentation is a 64-bit quantity consisting of two real numbers, one for the real part of the complex
number and one for the imaginary part.

NUMERIC CONSTANT FORMS

When constants are used in an expression, DATA statement, or during execution of an INPUT or
ENTER statement, they are represented in one of five forms: integer, fixed-point, floating-point,
complex, or long. Fixed and floating-point numbers are type REAL.

4-2

Integer Form

An integer is a series of digits without a decimal point. A number in integer form is represented
externally (e.g., on the list device) as type INTEGER, but internally as type REAL. Examples of
integer form:

18 INTEGER A,B,C,D
20 A=12,B=150,C=55903,D=5
38 PRINT A,B,C,D
>RUN
12 150 59583 5

When arithmetic operations are performed on e3

Aol ns ntamnir ar ece Y
are real numbers. However, when both operands are type INTEGER, the result is truncated to the
nearest integer. For instance,

18 INTEGER I,d

20 LET I1=3,dJ=5

38 PRINT 3/5,3/d,1/5,1/4
>RUN

o6 «6 «6 2

Fixed-Point Form

A fixed-point number is a series of digits with a decimal point. A number in fixed-point form is
represented internally as type REAL. For example:

12 REAL A,B,C,D
20 A=73,B=5.5,C=,0080567,D=153,97
38 PRINT A,B,C,D
>RUN
73 545 «0B0567 153.97

Floating-Point Form

A floating-point number is a fixed or integer form number followed by the letter E and an optionally
signed exponent. The exponent represents the power of 10 by which the number is multiplied. For

example 3E-11 equals 3 X 10711, Numbers in floating-point form are represented internally as type
REAL. Examples of floating-point numbers:

12 REAL A,B,C,D
28 A=3E-11,B=,4723E-4,C=1.1E4,D=1,1EI1D
38 PRINT A,B,C,D
>RUN
3 .00000E~11 4,T72300E~-05 11828 1.100C0E+10

A fixed or floating point real number that has an integer value between -999999 and 999999 is
printed as an integer.

APR 1978 4-3

Complex Form T~

A complex number consists of two numbers in integer, fixed-point, or floating-point form, separated
by a comma and enclosed in parentheses. The first number is the real part, the second represents
the imaginary part. Complex numbers are represented internally as type COMPLEX. Examples of
complex numbers:

19 COMPLEX A,B,C,D

2@ A=(3,5),B=(3;2E"9,@),C:(g,"47),D:(ﬁ,ﬁ)

30 PRINT A,B,C,D

>RUN

(3.00000E+008, 5.00030E+920) (3.20000E-29, D.20232E+02)
(2.00000E+00,-4.70088E+01) (0.00000E+203, Q.0TYQ2E+32)

Long Form —_~
Numbers in long form are identical to numbers in real form, except that the letter E is replaced by
the letter L. Long numbers have almost double the precision of real numbers. Long numbers are
represented internally as type LONG. Examples of long numbers:
1% LONG A,B,C,D
20 A=3L-11,B=4.751259L-6,C=-1.1L5,D=1.1L~15
30 PRINT A,B,C,D
>RUN P
3.000200003023030630L-11 4.7512590000000800L-36
-1.100203000000032L+025 1.10000000000300AL.-15
Examples of Type Statements
This example assigns values to and prints two integer variables and an integer array:
18 INTEGER A,Bl,N[5,5] o
28 LET A=5,381=z19
30 MAT N=ZER
48 PRINT A ,Bl
50 MAT PRINT Ng
>RUN
5 18
2 2] 2 /]
2 2 %]] 2
] 2 2 "]]
2 2 2] (]
] 2 2] /]
—~

Note that the type statement is used instead of a DIM statement to define the dimensions of array N.

4-4

This example assigns values to and prints two real variables; one is printed as floating-point and the
other as fixed-point:

13 REAL I,d

20 LET 1:=2795348.6,J:=2,79E-3
33 PRINT I,J

>RUN

2.79535E+06 202179

I is printed as a floating-point number because its magnitude is greater than 999999.5; J is printed
as fixed-point because its magnitude is less than 999999.5 (see Numeric Output Formats in the
PRINT statement description, Section II). Note that the printed value of I is rounded.

The following example inputs values to the type LONG variable P, then doubles each value and
prints it:
19 LONG P
2¢ INPUT P
33 LET P=P+P
4% PRINT P
>RUN
72.7L+10
5.400000000000000L+10

>RUN
?72.5L+12
5.000000000000220L+12

>RUN
?72.0L+11
4.0000000000¢00308L+11

The example below reads data into two complex variables and one complex array, and then prints
the variable and array values:

12 COMPLEX C9,&8,M[15)

28 READ C9,48

38 MAT READ M[5]

48 PRINT C9,LINCI),Q8,LINCL)
52 MAT PRINT M

98 DATA (4.5E-6,1.,2E-9),4,23E6

%g DATA (3’9)’ (4.5,'3@), (4 CSE‘S, i OZE'S), (25] ,5@02), (@, d)

(4.,23000E+06, D.00020E+20)

(3.08000E+00, S.00000E+00) (4.53200E+20,~3.,200883E+21)

(4.50000E-26, |.200800E-39) (2.,53000E+01, 3.02003E+01)
(0.00000E+02, 0.00000E+020)

4-5

PRINTING LONG AND COMPLEX DATA —~

Numbers of all data types can be output with the PRINT statement. All numeric quantities, regard-
less of type, are printed left-justified in a field whose width is always a multiple of 3. At least one
blank is always printed on the right side of the field, unless it is the last item on the line.

The output form for values of type INTEGER and REAL is described under Numeric Output For-
mats in the PRINT statement description, Section 1II.

The output form for long quantities is an 16 digit fixed-point number followed by an exponent and
two trailing blanks. The total required is 24 print positions.

sign fixed-point number Ltexponent trailing blanks
16 digits & decimal pt. L —~
1 1 i i 1 Il ! L -} | S I |] B d |

For example:

13 LONG A,B,C,D,E

2@ A=7.3215L9,B=4.32L-8

3% C=4.3214978L-8,D=2.173L2

4 E=2.173L6

5@ PRINT A’B3;CSLINCIYLDIE —
>RUN
7.321500303000000L+09 4.320000000003000L.-08 4. 321497800002230L-08
2.173000000000000L+p2 2.1730000002200800L+06

The output form for complex numbers is two real numbers separated by a comma and enclosed in
parentheses (i.e., this is the same form as a complex constant). Each part of the number is printed
as a separate 6-digit fixed-point number, followed by an exponent. The total required is 30 print
positions including 3 trailing blanks:

(real number real number trail/ing blanks
.)

{ 6 digits & decimai pt. Exexp , 6 digits & decimal pt. E £ exp)

| S R IV N B | | I W 1. 1.t i U | L1

/ t

sign sign

For example:

18 COMPLEX A,B

20 LET A=(1.2E8,]1.,39E~-6)

3@ LET B=(12.5,1.56E6)

42 PRINT AsB
>RUN —
(1.20000E+08, 1.39080E-06) (1.25000E+21, 1.56R30E+236)

4-6

NUMERIC EXPRESSIONS

Variables of all data types and numbers of all data forms can be used in numeric expressions.
BASIC/3000 provides the arithmetic operations for all four data types as well as automatic conver-
sion when two operands are not of the same type. The following table summarizes the results of
combining arithmetic elements with any operator (except AND, OR, NOT, and relationals):

Second Element Data Type

INTEGER REAL LONG COMPLEX
8
2 INTEGER INTEGER REAL LONG COMPLEX
1+
L o
8 REAL REAL REAL LONG COMPLEX
-
o
Q
E LONG LONG LONG LONG COMPLEX
o
2 COMPLEX COMPLEX COMPLEX COMPLEX | COMPLEX
L.

When the operators AND, OR, NOT, =, <, >, <=,>=, and <> are used, the result is always type
REAL (O for false, 1 for true). When relations are performed on complex numbers, the real parts
are compared first; the imaginary parts are compared only if the real parts are equal.

Examples

An integer combined with a real type in an expression results in a real number; two integers result
in an integer:

18 INTEGER 1,I1
20 REAL R
30 LET 1=25,11=58,R=2,75
4@ PRINT I+I1l
50 PRINT I+R
>RUN
75
27.75

A real type combined with a long results in a long type number; a long type combined with a com-
plex results in a complex type number:

12 REAL R
20 LONG L
32 LET L=-5.25L2,R=2.75
4@ PRINT L+R
s@ COMPLEX C
60 C=(2.75,-1.25)
7@ PRINT L+C
>RUN
-5.2225000000008008L+22
(-5.22250E+02,-1.25200E+08)

4-7

CONDITIONAL STATEMENT

The numeric expression used to make a branching decision in a conditional statement (Section II)
can contain, or result in, any numeric data type. The expression is considered false if equal to O,
true otherwise.

NUMERIC ASSIGNMENT

When the result of a numeric expression is assigned to a variable, it is converted to the type of that
variable. In a LET statement, the same result can be assigned to several variables in turn, from right
to left (A=B=C=5+D7). These variables need not be of the same type. If they are not, a conversion
is performed at each step in the assignment.

The method of conversion used in assigning values to variables of differing data types is summarized
in this table:

Variable Type Value Type Conversion Method

INTEGER REAL Round.

INTEGER LONG Round.

INTEGER COMPLEX Round real part; drop imaginary part.

REAL INTEGER Float.

REAL LONG Truncate to real precision.

REAL COMPLEX Drop imaginary part.

LONG INTEGER Float to long precision.

LONG REAL Extend mantissa with zeroes.

LONG COMPLEX Extend mantissa of real part with zeroes; drop
imaginary part.

COMPLEX INTEGER Fioat for real part; imaginary part equals zero,

COMPLEX REAL Imaginary part equals zero.

COMPLEX LONG Truncate to real precision for real part; imaginary part
equals zero.

Note that this table applies wherever values are assigned to variables (INPUT, READ, etc.).

4-8

An example of multiple assignment with type conversion is:

14 INTEGER I

27 REAL R
3@ COMPLEX C

AR ke hadY O

490 LONG L
S@ LET R=C=I=L=1.5L0
63 PRINT R,C,I,L

2 (2.00000E+00, Q.00000E+32) 2
1.5000000000000080L+30

Note that the long number is rounded up to 2 when it is converted to the integer variable I. R and
C also equal 2 since they are assigned after I. If line 50 is changed so that C is assigned before I, the
rounding does not affect C:

19 INTEGER I

20 REAL R

3@ COMPLEX C

49 LONG L

53 LET R=I=C=L=1.5L0#

€% PRINT R,C,I,L

>RUN
2 (1.500200E+00, G.00000E+320) 2

1.5000080000200332L+00

If the constant 1.4 is assigned instead of 1.5, the number is rounded to 1 when it is converted to an
integer and assigned to I. As a result of this integer conversion, R is also set equal to 1:

13 INTEGER 1

20 REAL R

3@ COMPLEX C

40 LONG L

58 LET R=I=C=L=1.4L0
69 PRINT R,C,I,L

>RUN
1 (1.40000E+00, Q0.00000E+00) 1

1.4000000020000800L+20

ENTERING NUMERIC DATA

Constants of all data forms can be entered using READ, INPUT, and ENTER statements. Once
entered they are converted to the type of the receiving variable according to the table under

“Numeric Assignment,”

OTHER USES OF DATA TYPES

Numbers of all data types can be output with controlled format with the PRINT USING statement
(see Section IX). Numbers of all data types can also be written onto and read from mass storage data
files. This process is described fully in Section VIII.

4-9

NUMERIC ARRAYS ™~

Arrays can be of all data types. Each element of the array is a variable of the specified type. The
type statement effectively provides the dimensions of an array. All of the MAT statements dealing
with arrays (see Section III) apply equally to integer, real, long, and complex arrays, except that
integer arrays cannot be inverted with the MAT Inverse statement. Arrays of different types cannot

be mixed in a MAT statement,

Examples

12
20
30
49
5@
60
70
80
99
100
>RUN
7]

7}

INTEGER 1[3,51
LONG L[2,2]
REAL R[2,2]

COMPLEX Cf2,21 _—
MAT I=ZER
MAT R=CON
MAT C=IDN
MAT L=1DN
MAT L=(25%%2)*L
MAT PRINT ISJLINCI>,R3LINC1)LCSLINCLY,LS
5] 2 g 2
—
] 2 2 ?
4]) 4] 2
1
1
—~

(1.00000E+00, G.00000E+20) (0.00000E+00, Q.00000E+07)

(2.90000E+Q0, 0.00000E+20) (1.00000E+0%, 2.0000QE+0@)

6.2500002038030338L+02 2.000000000000000L+00

2.000000000000000L+02 6.250000000000000L+032

4-10

FUNCTION CLASS
Numeric built-in functions are divided into four classes according to the nature of their result.

The following table defines the four classes of function. The type of result they return is shown for
the different argument types:

Type of Argument

INTEGER/REAL LONG COMPLEX
1 REAL LONG REAL
. 2 REAL LONG COMPLEX
s
© 3 COMPLEX COMPLEX COMPLEX
4 REAL REAL , REAL

The numeric functions are listed below according to their class. A complete list of these functions
with their meaning is contained in Appendix E.

Class 1 Functions

ABS(x) Absolute value of x.

ATN(x) Arctangent x.

INT(x) Largest integer less than or equal to x.
CEI(x) Smallest integer greater than or equal to x.

Class 2 Functions

EXP(x) eX

LOG(x) logex

SQR(x) Square root of x.
SIN(x) Sine x.

COS(x) Cosine x.

4-11

TAN(x)
SNH(x)
CSH(x)
TNH(x)

PIX(x)

Class 3 Functions
CNJ(x)

CPX(x,y)

Class 4 Functions
RND(x)
REA(x)

IMG(x)

Tangent x.
Hyperbolic sine x.
Hyperbolic cosine x.
Hyperbolic tangent x.

TEX

Complex conjugate of x.

Complex number x+yi

Random number.
Real part of x.

Imaginary part of x.

4-12

