SECTION [/
Essentials of BASIC

The first section introduced the user to BASIC programming. This section describes the statements
needed to write a simple BASIC program. It also describes the commands used to run a program, to
edit a program, and to save and manipulate library programs.

The section begins with a description of expressions used in BASIC, and the constants, variables,
functions and operators used in the formation of expressions.

Subsequent sections discuss particular features of more advanced BASIC.

The simple PRINT statement and RUN command used in Section I are used again in this section
prior to the explanation of the full capabilities of PRINT and RUN.

2-1

Expressions

An expression combines constants, variables, or functions with operators in an ordered sequence.
When evaluated, an expression must result in a value. An expression that, when evaluated, is con-
verted to an integer, is called an integer expression. Constants, variables, and functions represent
values; operators tell the computer the type of operation to perform on these values.

Some examples of expressions are:

(P +5)/27 P is a variable that must have been previously
assigned a value. 5 and 27 are constants. The
slash is the divide operator. Parentheses group
those portions of the expression evaluated first.

If P = 49, it is an integer expression with the
value 2,

(N-(R+5))-T N, R, and T must all have been assigned
values. + and - are the add and subtract
operators. The innermost parentheses

enclose the part evaluated first.

If N=20, R=10, and T=5, the value of the
integer expression is zero.

CONSTANTS

A constant is either numeric or it is a literal string.

Numeric Constants. A numeric constant is a positive or negative decimal number including zero.
It may be written in any of the following three forms:

L As an integer — a series of digits with no decimal point.

L As a fixed point number — a series of digits with one decimal point preceding, following, or
embedded within the series.

® As a floating point number — an integer or fixed point number followed by the letter E and
an optionally signed integer,

2-2

———

Examples of Integers:

1234
-70
0

Examples of Fixed Point Numbers:

1234.
1234.56
-.0123

Floating Point Numbers. In the floating point notation, the number preceding E is a magnitude that
is multiplied by some power of 10. The integer after E is the exponent, that is, it is the power of 10
by which the magnitude is multiplied.

The exponent of a floating point number is used to position the decimal point. Without this
notation, describing a very large or very small number would be cumbersome:

100000000000000000000000000000000000
.00000000000000000000000000000000001

1E+35
1E-35

Examples of Floating-Point Numbers:

1E+23 =1x 1023 = 100000000000000000000000
1.0E23 (same as above)
.001E26 (same as above)

1.02E+4 =1.02x 104 = 10200.

1.02E-4 =.000102

Within the computer, all these constants are represented as floating-point real numbers whose
precision is 6 or 7 digits and whose size is between 10-77 and 1077,

Literal Strings. A literal string consists of a sequence of characters in the ASCII character set
enclosed within quotes. The quote itself is the only character excluded from the character string.
By using an integer equivalent of the graphic character, even the quote may be included in a
character string (see Strings, Section V).

Examples of Literal Strings:

“ABC" e (a null, empty, or zero length string)
"1 IWHAT A DAYILI"™ * ® (astring with two blanks)
"X Y z "

Blank spaces are significant within a string,

VARIABLES

A variable is a name to which a value is assigned. This value may be changed during program
execution. A reference to the variable acts as a reference to its current value. Variables are either
numeric or string.

Numeric variables are a single letter (from A to Z) or a letter immediately followed by a digit
(from 0 to 9):

AQ
P P5
X X9

A variable of this type always contains a numeric value that is represented in the computer by a
real floating-point number. Other numeric representations can be specifically requested with the
type statement (see Variable Types, Section IV). These types are integer, long floating-point,
and complex.

A variable may also contain a string of characters. This type of variable is identified by a variable
name consisting of a letter and $, or a letter, digit, and $:

A$ AO0$
P$ P5%
The value of a string variable is always a string of characters, possibly null or zero length. String

variables can be used without being declared with a DIM statement (see section V) only if the
variable contains a single character.

2-4

If a variable names an array (see Arrays, Section III), it may be subscripted. When a variable is sub-
scripted, the variable name is followed by one or two subscript values enclosed in parentheses. 1f
there are two subscripts, they are separated by a comma. A subscript may be an integer constant
or variable, or any expression that is evaluated to an integer value:

A1) AO(N,M)
P(1,1) P5(Q5,N/2)
X(N+1) X9(10,10)

A simple numeric variable and a subscripted numeric variable may have the same name with no
implied relation between the two. The variable A is totally distinct from variable A(1,1).

Simple numeric variables can be used without being declared. Subscripted variables must be
declared with a DIM statement (see Section III) if the array dimensions are greater than 10 rows,
or 10 rows and 10 columns. The first subscript is always the row number, the second the column
number. The subscript expressions must result in a value between 1 and the maximum number of
rows and columns,

String arrays differ from numeric arrays in that they have only one dimension, and hence only one
subscript. Also, the name of a string array and a simple string variable may not be the same (see
String Arrays in Section V), Examples of subscripted string array names are:

A$(1) AO$(N)

FUNCTIONS

A function names an operation that is performed using one or more parameter values to produce a
single value result. A numeric function is identified by a three-letter name followed by one or more
formal parameters enclosed in parentheses. If there is more than one, the parameters are separated
by commas. The number and type of the parameters depends on the particular function. The
formal parameters in the function definition are replaced by actual parameters when the function
is used,

Since a function results in a single value, it can be used anywhere in an expression where a constant
or variable can be used. To use a function, the function name followed by actual parameters in
parentheses (known as a function call) is placed in an expression. The resulting value is used in the
evaluation of the expression.

Examples of common functions:

SQR(x) where x is a numeric expression that results in a value = 0. When called, it
returns the square root of x. For instance, if N = 2, SQR(N+2) = 2,

ABS(x) where x is any numeric expression. When called, it returns the absolute
value of x. For instance, ABS(-33) = 33.

BASIC/3000 provides many built-in functions that perform common operations such as finding the
sine, taking the square root, or finding the absolute value of a number. The available functions are
listed in Appendix E. In addition, the user may define and name his own functions should he need
to repeat a particular operation. How to write functions is described in Section VI, User-Defined
Functions,

The functions described so far are numeric functions that result in a numeric value. Functions
resulting in string values are also available. These are identified by a three-letter name followed by

a $. String functions are described with user-defined functions in Section VI; available built-in
string functions are listed in Appendix E.

An operator performs a mathematical or logical operation on one or two values resulting in a
single value. Generally, an operator is between two values, but there are unary operators that pre-
cede a single value. For instance, the minus sign in A - B is a binary operator that results in sub-
traction of the values; the minus sign in - A is a unary operator indicating that A is to be negated.

The combination of one or two operands with an operator forms an expression. The operands that
appear in an expression can be constants, variables, functions, or other expressions.

Operators may be divided into types depending on the kind of operation performed. The main
types are arithmetic, relational, and logical (or Boolean) operators.

The arithmetic operators are:

+ Add (or if unary, no operation) A+B or+tA

- Subtract (or if unary, negative) A-B or-A

* Multiply AXB
/ Divide A+B
*% op ~ Exponentiate (if ™ is used, it is
changed internally to **) AB
MOD Modulo; remainder from division A - B X INT(A + B)

where INT(x) returns the largest
integer < x. If A and B are positive,
A MOD B is the remainder from
A~ B.

value,

In an expression, the arithmetic operators cause an arithmetic operation resulting in a single numeric

The relational operators are:

ANV AV A
I

>or#

Equal A=B
Less than A<B
Greater than A>B
Less than or equal to A<B
Greater than or equal to A>B
Not equal (if # is used, it is

changed internally to <>) A#B

When relational operators are evaluated in an expression they return the value 1 if the relation is
found to be true, or the value 0 if the relation is false. For instance, A = B is evaluated as 1 if A
and B are equal in value, as 0 if they are unequal.

Maximum and minimum operators are:

MIN
MAX

Select the lesser of two values A MIN B
Select the greater of two values A MAXB

These operators are evaluated as follows:

A MIN B = A if A is less than or equal to B; = B if B is less than A

A MAX B = Aif A is greater than or equal to B; = B if B is greater than A

Logical or Boolean operators are:

— AND
OR
NOT

Logical “and” A ANDB
Logical “or” AORB

Logical complement NOT A

Like the relational operators, the evaluation of an expression using logical operators results in the
value 1 if the expression is true, the value 0 if the expression is false.

Logical operators are evaluated as follows:

A ANDB
AORB
NOT A

1 (true) if A and B are both # 0;=0 (false) if A=0orB=0
1 (true) if A #+ 0 or B # 0; = 0 (false) if both A and B=0
1 (true) if A=0;=0 (false) if A+ 0

2-7

A string operator is available for combining two string expressions into one:
+ Concatenation A$ + B$

The values of A$ and B$ are joined to form a single string; the characters in B$ immediately follow
the last character in A$. If A$ contains “ABC” and B$ contains “DEF”’, then A$ + B$ = “ABCDEF”’
(see Strings, Section V).

EVALUATING EXPRESSIONS

An expression is evaluated by replacing each variable with its value, evaluating any function calls,
and performing the operations indicated by the operators. The order in which operations is per-
formed is determined by the hierarchy of operators:

*k (highest)
NOT
* | MOD

+ -

+ (string concatenate)

MIN MAX

Relational (=, <,>, <=,>=,<>)
AND

OR (lowest)

The operator at the highest level is performed first followed by any other operators in the hierarchy
shown above. If operators are at the same level, the order is from left to right. Parentheses can be
used to override this order. Operations enclosed in parentheses are performed before any operations
outside the parentheses. When parentheses are nested, operations within the innermost pair are
performed first.

For instance: 5 + 6*7 is evaluated as b + (6X7) = 47

T/14%*2/5 is evaluated as ((7/14)X2)/5 = .2
If A=1, B=2, C=3, D=3.14, E=0

then: A+B*C is evaluated as A +(BXC) =17
A*B+C is evaluated as (AXB)+C =5
A+B-C isevaluated as (A+B)-C =0
(A+B)*C is evaluated as (A+B)XC = 9
A MIN B MAX C MIN D is evaluated as ((A MIN BIMAX C)MIND=C=3

2-8

TN

When a unary operator immediately follows another operator of higher precedence, the unary
operator assumes the same precedence as the preceding operator. For instance,

B**-B**C is evaluated as (B'B)C = 1/64 or .015625

In a relation, the relational operator determines whether the relation is equal to 1 (true) or
0 (false):

(A*B) < (A-C/3) is evaluated as 0 (false) since A*¥*B=2 which is not less than A-C/3=0.

In a logical expression, other operators are evaluated first for values of zero (false) or non-zero
(true). The logical operators determine whether the entire expression is equal to 0 (false) or 1 (true):

E AND A-C/3 is evaluated as O (false) since both terms in the expression
are equal to zero (false).

A+B AND A*B is evaluated as 1 (true) since both terms in the expression
are different from zero (true).

A=B OR C=SIN(D) is evaluated as O (false) since both expressions are false (0).

AORE is evaluated as 1 (true) since one term of the expression (A)
is not equal to zero.

NOT E is evaluated as 1 (true) since E=0.

=

If any ambiguity exists between the relational operator
sign is treated as an assignment operator:

and the assignment operator, the equal

A=B=1 assigns 1 to both A and B.
A=1=B assigns 1 to A if B equals 1, or O to A if B does not equal 1.

For rules governing the evaluation of relational expressions using strings, see Comparing Strings
in Section V.

2-9

Statements

Statements essential to writing a program in BASIC are described here. Statements in general are
described in Section 1. It should be recalled that all statements must be preceded by a statement
number and are terminated by pressing the return key. Statements are not executed until the
program is executed with the RUN command.

2-10

Assignment Statement

This statement assigns a value to one or more variables. The value may be in the form of an expres-
sion, a constant, a string, or another variable of the same type.

Form

When the value of the expression is assigned to a single variable, the forms are:

variable = expression

LET variable = expression
When the same value is to be assigned to more than one variable, the forms are:

variable = variable = . . . = variable = expression

LET variable = variable = , . . = variable = expression
Several assignments can be made in one statement if they are separated by commas:

variable = expression, . . ., variable = expression

LET variable = expression, . . ., variable = expression

Note that the word LET is an optional part of the assignment statement.

Explanation

In this statement, the equal sign is an assignment operator. It does not indicate equality, but is a
signal that the value on the right of assignment operator be assigned to the variable on the left.
If any ambiguity exists between the relational operator “="’ and the assignment operator, the
equal sign is treated as an assignment operator.

When a variable to be assigned a value contains subscripts, these are evaluated first from left to
right, then the expression is evaluated and the resulting value moved to the variable.

If a value is assigned to more than one variable, the assignment is made from right to left. For

instance, in the statement A=B=C=2, first C is assigned the value 2, then B is assigned the current
value of C, and finally A is assigned the value of B.

2-11

Examples

19 LET A=5.02
20 A=5.02

The variable A is assigned the value 5.02. Statements 10 and 20 have the same result.
30 X=Y7=Z=Z1=0

Each variable X, Y7, Z, and Z1 is set to zero. This is a simple method for initializing variables at the
start of a program.

35 LET N=2
40 LET AIN)=N=9

First N is assigned the value 2 in line 35. In line 40 N is assigned the value 9, then the array
element A(2) is assigned the value 9.

50 N:=@
60 LET N=N+|
76 LET AIN)I=N

Statements 50 through 70 set the array element A(1) to 1. By repeating statements 60 and 70,
each array element can be set to the value of its subscript.

80 Az10.5,B=7.5
92 B$="ABC",C$=BS

Variable A is set to 10.5, then B is set to 7.5. The string variable B$ is assigned the value ABC,
then C$ is assigned the value of B$ (or ABC).

100 C$=B$="ABC"

This statement has the same result as statement 90.

119 LET A=10.5,B=7.5,B$=C$="ABC"

Statement 110 has the same effect as the two statements 80 and 90.

2-12

.

REM Statement

This statement allows the insertion of a line of remarks in the listing of the program. The remarks
do not affect program execution.

Form
REM any characters

Like other statements, REM must be preceded by a statement number. Unlike other statements, it
cannot be continued on the next line.

Explanation

The remarks introduced by REM are saved as part of the BASIC program, and printed when the
program is listed or punched. They are, however, ignored when the program is executed.

Remarks are easier to read if REM is followed by spaces, or a punctuation mark as in the examples.

Examples

10 REM: THIS IS AN EXAMPLE

20 REM OF REM STATEMENTS.

38 REM -~ ANY CHARACTERS MAY FOLLOW REM: " //x%x!1&&&,ETC,
42 REM...REM STATEMENTS ARE NOT EXECUTED

2-13

GOTO Statement

GOTO overrides the normal sequential order of statement execution by transferring control to a
specified statement. The statement to which control transfers must be an existing statement in the
current program.

Form

GOTO statement label

GOTO integer expression OF statement label, statement label, . . .

GOTO may have a single statement label, or may be multi-branched with more than one state-
ment label,

If the multi-branch GOTO is used, the value of the integer expression determines the label in the
list to which control transfers,

Explanation

If the GOTO transfers to a statement that cannot be executed (such as REM or DIM), control
passes to the next sequential statement after that statement. GOTO cannot transfer into or out
of a function definition (see Section VI). If it should transfer to the DEF statement, control
passes to the line following the function definition.

The labels in a multi-branch GOTO are selected by numbering them sequentially starting with 1,
such that the first label is selected if the value of the expression is 1, the second label if the expres-
sion equals 2, and so forth. If the value of the expression is less than 1 or greater than the number
of labels in the list, then the GOTO is ignored and control transfers to the statement immediately
following GOTO.

2-14

— Examples

The example below shows a simple GOTO in line 200 and a multi-branch GOTO in line 600.

100 LET I=0
208 GOTO 608

300 PRINT I

408 REM THE VALUE OF 1 IS ZERO
500 LET I=I+1

608 GOTO I+1 OF 300,500,800

700 REM THE FINAL VALUE OF I IS 2

800 PRINT I

When run, the program prints the initial value of I and the final value of I.

2-15

GOSUB/RETURN Statements

GOSUB transfers control to the beginning of a simple subroutine. A subroutine consists of a
collection of statements that may be performed from more than one location in the program. In a
simple subroutine, there is no explicit indication in the program as to which statements constitute
the subroutine. A RETURN statement in the subroutine returns control to the statement following
the GOSUB statement.

Form

GOSUB statement label
GOSUB integer expression OF statement label, statement label, . . .

RETURN

GOSUB may have a single statement label, or may be multi-branched with more than one state-
ment label, In a multi-branch GOSUB, the particular label to which control transfers is determined
by the value of the integer expression. The RETURN statement consists simply of the word
RETURN.

Explanation

A single-branch GOSUB transfers control to the statement indicated by the label. A multi-branch
GOSUB transfers to the statement label determined by the value of the integer expression, As in a
multi-branch GOTO, if the value of the expression is less than 1 or greater than the length of the
list, no transfer takes place. A GOSUB must not transfer into or out of a function definition

(see Section VI).

When the sequence of control within the subroutine reaches a RETURN statement, control returns
to the statement following the GOSUB statement.

Within a subroutine, another subroutine can be called. This is known as nesting. When a RETURN
is executed, control transfers back to the statement following the last GOSUB executed. Up to ten
GOSUB statements can occur without an intervening RETURN; more than this causes a terminating
error.

2-16

Examples

In the first example, line 20 contains a simple GOSUB statement; the subroutine is in lines 50
through 70, with RETURN in line 70.

10
20
30
40
50
60
19
g0
>RUN
SINE

LET B=90

GOSUB 5@

PRINT “SINE OF B IS "3A

GOTO 80

REM: THIS IS THE START OF THE SUBROUTINE

LET A=SIN(B)
RETURN
REM: PROGRAM CONTINUES WITH NEXT STATEMENT

OF B IS .893992

The GOSUB statement can follow the subroutine to which it transfers as in the example below.

10

100
110
120
138
140
>RUN

LET B=950

GOTO @@

REM: THIS 1S START OF SUBROUTINE
LET A=SIN(B)

RETURN

REM: OTHER STATEMENTS CAN APPEAR HERE
REM: THEY WILL NOT BE EXECUTED
A=24,B=50

PRINT AsB

GOSUB 30

PRINT A

REM: A SHOULD EQUAL .89395%92
PRINT B

REM: B SHOULD EQUAL 958

«893992

59

2-17

This example shows a multi-branch GOSUB in line 20. The third subroutine executed has a nested
subroutine. An IF. . .THEN statement is used in the example; should its function not be clear, see

Conditional

18
20
30
40
50
66
100
110
120

122
iIWw

150
160
170
180
200
210
220
225
230
240
250
260
270
280
250
295
300
>RUN
X =

Y =

Y +

SINE

Statements below in this section.

A=0Q

GOSUB A+1 OF 100,150,200

LET AzA+1

IF A<3 THEN GOTO 28

GOTO 320

REM:s STATEMENT 50 BRANCHES AROUND ALL THE SUBROUTINES

REM: FIRST SUBROUTINE IN MULTIBRANCH GOSUB
LET X=SQR(A+25)
PRINT "X = "3X

DETIID A
nLiunw

REM: SECOND SUBROUTINE IN MULTIBRANCH GOSUB
LET Y=CO0S(X)

PRINT "Y = COSINE X = "3Y

RETURN

REM: THIRD SUBROUTINE IN MULTIBRANCH GOSUB
REM: IT CONTAINS A NESTED SUBROUTINE

LET Y=Y+X

PRINT ™Y + X = “3v

GOSUB 269

RETURN

REM: STATEMENT 240 RETURNS CONTROL TO STATEMENT 32
REM: FIRST STATEMENT IN NESTED SUBROUTINE

B=SINCY)

PRINT "SINE Y = ";B

RETURN
REM: STATEMENT 290 RETURNS CONTROL TO STATEMENT 240

REM: PROGRAM CONTINUES WITH NEXT STATEMENT

5
COSINE X = .283663
X = 5.28366

Y = -.841213

2-18

END/STOP Statements

The END and STOP statements are used to terminate execution of a program. Either may be used,
neither is required. An END is assumed following the last line entered in the current program.

Form
END
STOP

The END statement consists of the word END; the STOP statement of the word STOP.

Explanation

Both END and STOP terminate the program run. END has a different function from STOP only
when programs are segmented (see Section X, Segmentation). When END is executed in a program
segment that has been called by another program with INVOKE, control returns to the statement
after INVOKE,

Whenever STOP is used, the program terminates. STOP in a program called with INVOKE
terminates all program execution, including any suspended programs.

2-19

Examples

These three programs are effectively the same:

10 LET A=2,B=3

20 CzAxx=A%xB

38 PRINT C
>RUN

«B15625

10 LET A=2,B=3
20 C=A*%x~A%*B
30 PRINT C
40 END

>RUN
«B15625

13 LET A=2,B=3
20 C=zA*%x=-A%%B
38 PRINT C
40 STOP

>RUN
015625

When sequence is direct and the last statement in the current program is the last statement to be
executed, END or STOP are optional. They have a use, however, when sequence is not direct and
the last statement in the program is not the last statement to be executed:

108 LET A=2

128 GOSUB 140
138 END

140 LET B:=A+]
150 X=A%x(Bx*A)
168 PRINT X
178 RETURN

>RUN

512

The subroutine at line 140 follows the END statement.

2-20

180 LET A=2
20 X=A%x%2+A
30 PRINT X
AQ IF X<100 THEN GOTO 88
50 PRINT "Xx= "3X
68 PRINT "A=z "3A
78 STOP
80 A=A+1
99 GOTO 20
>RUN
6
12
20
39
42
56
72
S@
110
X= 1190
A= 12

The STOP statement at line 70 is skipped until the value of X is equal to or exceeds 100.

2-21

Looping Statements

The looping statements FOR and NEXT allow repetition of a group of statements. The FOR state-
ment precedes the statements to be repeated, and the NEXT statement directly follows them. The
number of times the statements are repeated is determined by the value of a simple numeric
variable specified in the FOR statement.

Form
FOR variable = expression TO expression

FOR variable = expression TO expression STEP expression

The variable is initially set to the value resulting from the expression after the equal sign. When the
value of the variable passes the value of the expression following TO, the looping stops. If STEP is
specified, the variable is incremented by the value resulting from the STEP expression each time the
group of statements is repeated. This value can be positive or negative, but should not be zero. If a
STEP expression is not specified, the variable is incremented by 1.

The NEXT statement terminates the loop:
NEXT variable

The variable following NEXT must be the same as the variable after the corresponding FOR.

Explanation

When FOR is executed, the variable is assigned an initial value resulting from the expression after
the equal sign, and the final value and any step value are evaluated. Then the following steps occur:

1. The value of the FOR variable is compared to the final value; if it exceeds the final value
(or is less when the STEP value is negative), control skips to the statement following NEXT.

2. All statements between the FOR statement and the NEXT statement are executed.

3. The FOR variable is incremented by 1, or if specified, by the STEP value.

4, Return to step 1.

NOTE: Unless specified with a variable type statement, the values of the variables used to index a

FOR loop are assigned as real by default. Round-~off errors can increase or decrease the
number of steps when non-integer step sizes are used.

2-22 APR 1978

—

The user should not execute the statements in a FOR loop except through a FOR statement.
Transferring control into the middle of a loop can produce undesirable results,

FOR loops can be nested if one FOR loop is completely contained within another. They must not

overlap.

Examples

Each time the FOR statement executes, the user inputs a value for R and the area of a circle with
that radius is computed and printed:

10
20
30
40
>RUN
71
AREA
72
AREA
24
AREA
78
AREA
716
AREA

FOR A=l TO 5
INPUT R

PRINT "AREA OF CIRCLE WITH RADIUS “"3R3™ IS "33.14%Rxx2

NEXT A

OF CIRCLE WITH RADIUS
OF CIRCLE WITH RADIUS
OF CIRCLE WITH RADIUS
OF CIRCLE WITH RADIUS
OF CIRCLE WITH RADIUS

16

1S
IS
IS
IS
18

3.14
12.56
508.24
200.96
833 .84

The FOR loop executes six times, decreasing the value of X by 1 each time:

10 FOR X=8 TO -5 STEP -|

29

30
>RUN
-5
-6
-7
-8
-9
-10

PRINT X-5
NEXT X

2-23

The first X elements of the array P(N) are assigned values. When N = X, the loop terminates. In
this case, the value of X is input as 3:

190 INPUT X
20 FOR N=] TO X
38 LET PIN)=N+!
40 PRINT PIN)
50 NEXT N

>RUN

23

2

3

4

The examples below show legal and illegal nesting. A diagnostic is printed when an attempt is made
to run the second example:

16 REM..THIS EXAMPLE IS LEGAL
20 FOR A=l TO 10
30 FOR B=1 TO 5

oD LET X{A,B)=0
50 NEXT B
60 NEXT A

10 REM., THIS EXAMPLE IS ILLEGAL
20 FOR A=l TO 10
38 FOR B=1 TO 5

A0 LET X[A,Bl=2
50 NEXT A
68 NEXT B

>RUN

'FOR® - °'NEXT® VARIABLES DON°'T MATCH IN LINE 50

2-24

Conditional Statements

Conditional statements are used to test for specific conditions and specify program action depending
on the test result. The condition tested is a numeric expression that is considered true if the value is
not zero, false if the value is zero. Conditional statements are always introduced by an IF statement;
an ELSE statement may follow the IF statement. Both IF and ELSE statements may be followed by
a series of statements enclosed by DO and DOEND.

Form

IF expression THEN statement label
IF expression THEN statement

IF expression THEN DO

statement

- DOEND

An IF, . .THEN statement can be followed by an ELSE statement to specify action in case the
value of the expression is false. Like IF, ELSE can be followed by a statement, a statement label,
or a series of statements enclosed by DO. . . DOEND.

ELSE statement label
ELSE statement

ELSE DO

statement

DOEND

ELSE statements never appear in a program unless preceded by an IF. . .THEN statement. An
ELSE statement must immediately follow an IF. . .THEN statement or the DOEND statement
corresponding to an IF. . THEN DO statement; no intervening statements (including REM) are
permitted. DO. . .DOEND statements may follow only an IF. . THEN or an ELSE statement.

2-25

The four diagrams below show all possible combinations of conditional statements. Items enclosed
by [] are optional; one of the items enclosed by { } must be chosen. Statements immediately
following THEN and ELSE are not labeled; all other statements must be labeled.

L] label IF expression THEN {

label
label ELSE
statement

L label IF expression THEN DO

label
statement

label statement

label DOEND

label
label ELSE
statement

label
® label IF expression THEN

statement

label ELSE DO

label statement

label DOEND

° label IF expression THEN DO

label statement

label DOEND

label ELSE DO

label statement

label DOEND

2-26

o —

Explanation

The expression following IF is evaluated, and if true the program transfers control to the label
following THEN or executes the statement following THEN. If DO follows THEN, the program
executes the series of labeled statements terminated by DOEND. The program then continues. If the
expression is false, control transfers immediately to the next statement or to the statement following
DOEND if THEN DO was specified,

When an ELSE statement follows the IF. . . THEN statement, it determines the specific action should
the IF expression be false. When the expression is true, the ELSE statement or the group of ELSE
statements enclosed by DO. . .DOEND is skipped, and the program continues with the next state-
ment after ELSE or DOEND.

A FOR statement can be specified in a DO. . .DOEND group; if so, the corresponding NEXT must
be within the same DO. . .DOEND group. (See FOR. . NEXT statement description in this
section.)

IF statements are nested when an IF statement occurs within the DO. . . DOEND group of another

IF statement. In such a case, each ELSE is matched with the closest preceding IF that is not itself
part of another DO. . .DOEND group.

Examples

The various types of IF statement are illustrated with the following examples:

12 IF A=B THEN 39
2@ LET A:=B
3@ PRINT A,B

If A equals B, the program skips to line 30, otherwise, it sets A equal B in line 20 and continues.
In either case, line 30 is executed.

18 IF A=B THEN PRINT B
20 ELSE PRINT A,B

If A equals B, the value of B is printed, otherwise, both values are printed. The program then
continues.

2-27

18 IF A=B THEN 120
20 ELSE 200

Program control transfers to line 100 if A equals B, to line 200 if not.

16 IF A=B THEN GOTO 100
20 ELSE GOTO 200

These two statements are identical in effect to the preceding two statements.

1@ IF A<1@8 THEN AzA+5
20 ELSE DO

309 LET X:=A

40 GOTO)98

50 DOEND

6@ GOTO 12

190 PRINT X

If A is less than 100, it is increased by 5 and contro! skips to line 60 where control is returned to
line 10. When A is equal to or greater than 100, X is set equal to A and control skips to line 100.

5 INPUT A

18 IF A<100 THEN DO
20 AzA+]

30 GOTO 2900

40 DOEND

58 ELSE DO

(Y X=A

79 A=0

80 GOsSUB 850
92 DOEND
120 PRINT "a>cz10@"
120 END
208 PRINT "A="3A
218 END
850 PRINT "X="3X
851 PRINT "A="3A
852 RETURN

If A is less than 100, it is increased by 1 and control goes to line 200. If A is equal to or greater
than 100, X is set equal to A, A is set to zero and the subroutine at line 850 is executed. The

subroutine returns control to line 100.

2-28

If a value less than 100 is input for A, line 200 is executed and the program ends:

>RUN
275
A= 76

If a value greater than 100 is input for A, the subroutine is executed, then line 100 is executed and
the program terminates:

>RUN
7150

= 150
A= O
A>=100

The examples below illustrate nested IF. . THEN statements.

18 INPUT A,B,C
20 IF (A+13)=(B+5) THEN DO
30 AzB
49 IF A>C THEN A=C
50 ELSE C=B
628 DOEND
70 PRINT A,B,C
*>RUN
%,18,15
12 12 10

2-29

With the particular values input, the first IF is true and the second IF is false. As a result both A
and C are set equal to B.

12 INPUT A,B,C
20 1F A>B THEN DO
30 IF B>C THEN DO

49 IF C=18 THEN DO
58 C=C+1

60 GOTO 2ae

10 DOEND

80 ELSE GOTO 228
98 DOEND
108 ELSE DO
110 IF C=1@ THEN B=C+A
128 ELSE C=B-A

138 GOTO 180

140 DOEND

158 DOEND

168 PRINT "A<=B,A='"3A

178 GOTO 239

188 PRINT "A>B,B<=C,B='";B
196 GOTO 230

200 PRINT "A>B>C,C=10"
219 GOTO 239

220 PRINT "A>B>C,C<>18,C="3C
230 END

>RUN

218,15,20
A<B,Az= |8

>RUN
715,5,10
A>B ,B<C,B= 25

>RUN

?20’15'5
A>B>C,C<>108,C= 5

So that nested IF statements may be easier to follow, the LIST command indents them as shown
in these examples.

2-30

PRINT Statement

PRINT causes data to be output at the terminal. The data to be output is specified in a print list
following PRINT.

Form

PRINT
PRINT print list

The print list consists of items separated by commas or semicolons. The list may be followed by a
comma or a semicolon, If the list is omitted, PRINT causes a skip to the next line. Items in the
list may be numeric or string expressions, special print functions for tabbing or spacing, or FOR
loops to provide repeated output. The form of the FOR loop is:

(FOR statement, print list)

where the print list contains any items allowed in the PRINT statement list including other FOR
loops. The FOR statement is described earlier in this section under the heading Looping Statements.

Explanation

The contents of the print list is printed. If there is more than one item in the print list, commas
or semicolons must separate the items. The choice of a comma or semicolon affects the output
format.

The output line is divided into consecutive fields, each of 15 characters except possibly the last.
For example, on a terminal with default print length of 72 characters, there will be four fields of
15 characters and one of 12 characters. When a comma separates items, each item is printed
starting at the beginning of a field. When a semicolon separates items, each item is printed immedi-
ately following the preceding item. In either case, if there is not enough room left in the line to
print the entire item, printing of the item begins on the next line. The length of the print line

can be changed by using the MARGIN statement (Section VIII).

The separator between items can be omitted if one or both of the items is a quoted string, In this
case, a semicolon is inserted automatically.

A carriage return and linefeed are output after PRINT has executed, unless the output list is
terminated by a comma or semicolon. In this case, the next PRINT statement begins on the
same line,

If an expression appears in the print list, it is evaluated and the result is printed. Any variable must

have been assigned a value before it is printed. Each character between quotes in a string constant
is printed, excluding quotes.

AUG 1978 2-31

If a FOR loop is included in the print list, each item in the print list associated with the FOR
statement is printed once for each time the FOR loop is executed.

Numeric values are left justified in a field whose width is determined by the magnitude of the
number. The smallest field is six characters. Numeric output format is discussed in detail below.

For the printing of data according to a customized format, see the PRINT USING and PRINT #
USING statements described in Section IX,

Examples

When items are separated by commas, they are printed in consecutive fields per line; separated by
semicolons, they directly follow one another. In the example below, the items are numeric, so
each item is assigned a minimum of six characters.

1@ LET A=B=C=D=E=z1l5

20 LET Al1=B1=C1=Dl=El1=28

33 PRINT A,B,C!,C

40 PRINT A3B3C13C3D3EsAl3DISE]
5@ PRINT A,B3C,D

>RUN
15 15 20 15
15 15 28 15 15 15 20 20 20
15 15 15 15

In the example below, a DIM statement is used to specify the number of characters in each string;
if omitted, the strings are assumed to have only one character.

19 DIM B$(31,C$I[3)
20 C$=B3%="ABC"
38 PRINT BS$,CS$
>RUN
ABC ABC

2-32

AUG 1978

——

In the example below, the first PRINT statement evaluates and then prints three expressions. The
second PRINT skips a line. The third and fourth PRINT statements combine a string constant with
a numeric expression. No fields are used in the print line for string constants unless a comma
appears as separator. The fourth PRINT statement prints output on the same line as the third
because the third statement is terminated by a comma.

18 LET A=B=C=D=E=z15

20 LET Al=B1=C1=Dl=El=282

30 PRINT A%B,B/C/D1+308,A+B

48 PRINT

50 PRINT "A%B =";AxB,

60 PRINT " THE SUM OF A AND B IS"3A+B

>RUN
225 30.85 38
AxB = 225 THE SUM OF A AND B IS 32

A FOR statement can be specified in a print list with its own print list, all included within
parentheses:

16 FOR I=1 TO 3

20 INPUT R
30 AlI1=3.14%R*x%2
490 NEXT 1
50 PRINT (FOR I=1 TO 3,All1))
>RUN
72
23
74
12.56 28.26 50.24

Note that NEXT is not needed when the FOR statement is included in a print list.

NUMERIC OUTPUT FORMATS

Numeric quantities are left justified in a field whose width is determined by the magnitude of the
item. The width includes a position at the left of the number for a possible sign and at least one
position to the right containing blanks. The width is always a multiple of three; the minimum
width is six characters.

2-33

Integers o~

An integer with a magnitude less than 1000 requires a field width of six characters:

sign number trailing blanks
[N 1 i
\ 1 4
3 digits
L A [

An integer with a magnitude between 1000 and 999999 inclusive requires a field width of nine
characters:

sign number trailing blanks
\ \ / -
6 digits
i 11 1 1 1

Examples of integers:

The integers below are less than 1000 and greater than -1000:

10 PRINT 139993303-3003+295

>RUN
i 999 30 ~-300 295
These integers are between 1000 and 999999 or between -1000 and -999999: —

12 PRINT 10083+327513-999999345678
>RUN
12060 32751 -999999 45678

These integers are mixed in magnitude, but none are greater than 999999 or less than -999999:

19 PRINT 13100059993+3275132083-9999993-3003456783+296350008
>RUN
1 1002 999 32751 20 -999999 -300 45678 2956
5000

If an integer has a negative sign it is printed; a positive sign is not printed.

2-34

Fixed-Point Numbers

A fixed point number requires a field width of 12 positions. If the magnitude of the number is
greater than or equal to .09999995 and less than 999999.5, or is less than .1 but can be printed
with six significant digits, the number is printed as a fixed-point number with a sign. Trailing zeros
are not printed, but a trailing decimal point is printed to show the number is not exact. The
number is left-justified in the field with trailing blanks. The sign is printed only if it is negative.

sign number trailing blanks

\ \ /

6 digits & decimal pt.

1 L L i [1l] 1 1

Examples of fixed-point numbers:

10 PRINT 999999.435.899999963 .000044
>RUN
999895955, ol «B000244

Floating-Point Numbers

Any number, integer or fixed-point, with a magnitude greater than the magnitude of the numbers
presented above, is printed as a floating-point number using a total field width of 15 positions:

sign number Etexponent trailing blanks
6 digits & decimal pt. E
1 I 1 1 1 1 1 1 1 1 1

Examples of floating-point numbers:

18 PRINT 23456785 .0000044

>RUN
2.,34568F+06 4,40000E~-26

18 PRINT 234567893 ,00000044
>RUN
2.,34568E+07 4,40000E-87

1@ PRINT .00003943;.0008257895
>RUN
3 «94300E-085 2.57895E-25

2-35

PRINT FUNCTIONS

These print functions may be included in a PRINT statement print list. A comma after any print

1 1¢ traatad agc a comiralon
functlon A0 viTvavou a0 G oTlllivul

man o T
1AD runcition

The form of the tabulation function is:
TAB(integer expression)

The print position is moved to the column specified by the integer expression. Print positions are
numbered from 0 to 71, If the print position must be moved to the left because the integer expres-
sion is less than the current position, nothing is done. If the expression is greater than 71, the print
position is moved to the beginning of the next line.

SPA Function

The form of the spacing function is:

SPA(integer expression)

Blanks are printed for the number of spaces indicated by the integer expression. Nothing occurs
when the expression is zero or negative, If the number of spaces will not fit on the current line, or
the expression exceeds 71, a carriage return and line feed is generated.

The limit of 71 on TAB and SPA expressions does not apply to PRINT USING (see Section IX),

LIN Function

The form of the line skip function is:

LIN(integer expression)

The terminal performs a carriage return and as many line feeds as are specified in the expression.
If the value is negative, the absolute value of the expression is used for the number of line feeds;
no carriage return is generated. Normally, a carriage return and one line feed is performed at the
end of a PRINT statement unless there is a trailing comma or semicolon.

2-36

CTL Function

The form of the carriage control function is:

CTL(integer expression)

All items preceding the CTL function in a PRINT statement are printed immediately, using the
integer expression as the carriage control code. This function is effective only for the particular print
statement in which it occurs and has no effect on any other statement. This function is useful when
the output device is a line printer. The carriage control codes are listed below.

Carriage Control Codes

Code Carriage Action

32 Single-space

43 Carriage return, no line feed

48 Double-space

49 Page eject (form feed)

64 Post-spacing

65 Pre-spacing

66 Single-space, with auto page eject (60
lines/pg)

67 Single-space, without auto page eject (66
lines/pg)

128+nn Space nn lines (no automatic page eject).
nn=1 thru 63 (i.e., codes 129 thru 191).

192 Page eject (*ftc #1)
193 Skip to bottom of form {*ftc #2)

194 Single-spacing, with auto page eject (*ftc
#3)

195 Single-space on next odd-numbered line,
with auto page eject (*ftc #4)

196 Triple-space, with auto page eject (*ftc
#5)

197 Space 1/2 page, with auto page eject {*ftc
#6)

198 Space 1/4 page, with auto page eject (*ftc
#17)

199 Space 1/6 page, with auto page eject (*ftc
#8)

256 Post-spacing

257 Pre-spacing

258 Single-space, with auto page eject (60
lines/pg)

259 Single-space, without auto page eject (66
lines/pg)

*Format Tape Channel number

Examples of Print Functions

The TAB, SPA, LIN and CTL functions are illustrated below:

AUG 1978 2-37

19 PRINT TAB(8)3" TITLE:PRINT HEADING"3SPA(1@)3"SUMMARY REPORT"; -~
20 PRINT LIN(3)>3"™ DETAIL LINES"
>RUN
TITLE: PRINT HEADING SUMMARY REPORT

DETAIL LINES

The LIN function can generally be used to provide double or triple spacing, to suppress spacing,
or to provide a line feed. For instance,

Double Space LIN(2)

Suppress Spacing LIN{(0)

Line Feed only LIN(-integer expression)

: —_
10 PRINT "ABC"3LINC-1)3"DEF"3LIN(2)3"GHI"
>sRUN
ABC
DEF

GHI

Some frequently used carriage control characters are:

Double Space CTL(48)
Page Eject CTL(49)
Suppress Spacing CTL(43)

The decimal numbers associated with the carriage control characters are used as the integer expres-
sion in the CTL function. To illustrate:

16 LET P=1,X=500
28 PRINT CTL(49),"PAGE NO";P
3@ PRINT CTL(AS),"DETAIL LINE"
40 PRINT TABC(15),X,CTL(43)3
50 PRINT TAB(l@),"Xx="

>RUN

After ejecting to the top of a new page, the print items are output as:
PAGE NO 1
DETAIL LINE

Xz 500
2-38

In the following example, the CTL function causes a double space between “LINE 1’ and “LINE 27,
but has no effect on statement 20:

tBASIC

>HP32101B,00,08(4wD) BASIC (CIHEWLETT=-PACKARD CO 1976
>10 PRINT "LINE 1",CTL(48),"LINE 2"

>20 PRINT "LINE 3"

>RUN

LINE 1

LINE 2,
LINE 3

>EXIT

END CF SUBSYSTEM

The effect of the CTL function in the next example is immediate at it’s location within the PRINT
statement 200. It has no effect at the end of that statement where a normal linefeed and carriage
control occurs.

$BASIC

>Hp321921R,0C,08(44D) BASIC (CYHEWLETT-PACKARD CO 1976
>100 ¥k I=1 TO 2

>200 PRINT "ABCD",CTL(130),"EFGH"

>300 MEXT 1

>RUN

ARCD

EFGH
ABCD

EFGH
>EXIT

END OF SUBSYSTEM

APR 1978 2-38a

—

READ/DATA/RESTORE Statements

Together, the READ, DATA, and RESTORE statements provide a means to input data to a
BASIC/3000 program. The READ statement reads data specified in DATA statements into
variables specified in the READ statement. RESTORE allows the same data to be read again.

Form

READ item list

The items in the item list are either variables or FOR loops. Items are separated by commas,
A FOR loop has the form:

(FOR statement, item list)
where the item list contains variables or FOR loops separated by commas.
DATA constant, constant,. . .

The constants are either numeric or string. Constants in the DATA statement are assigned to
variables in the READ statement according to their order: the first constant to the first variable,
the second to the second and so forth.

RESTORE
RESTORE label

The label identifies a DATA statement,

Explanation

When a READ statement is executed, each variable is assigned a new value from the constant list
in a DATA statement. RESTORE allows the first constant to be assigned again when READ is
next executed or, if a label is specified, the first constant in the specified DATA statement.

More than one DATA statement can be specified. All the constants in the combined DATA state-
ments comprise a data list. The list starts with the DATA statement having the lowest statement
label and continues to the statement with the highest label. DAT A statements can be anywhere
in the program; they need not precede the READ statement, nor need they be consecutive.

2-39

If a variable is numeric, the next item in the data list must be numeric; if
next item in the data list must be a string constant. It is possible to deter

item with the TYP function (see Section VIII).

..1
o,
o
o
=)
(.,.m

If the READ statement contains a FOR statement, the items following the FOR statement within

T 41 +ha T'ND o4+t 4+ < nd Ml TND
parentheses are assigned values once for each time the FOR statement is executed. The FOR

variable can be used in the item list, as can further FOR statements.

A pointer is kept in the data list showing which constant is the next to be assigned to a variable.
This pointer starts at the first DATA statement and is advanced consecutively through the data
list as constants are assigned. The RESTORE statement can be used to access data constants in a
non-serial manner by specifying a particular DATA statement to which the pointer is to be moved.
When the RESTORE statement specifies a label, the pointer is moved to the first constant in the
specified statement. If the statement is not a DATA statement, the pointer is moved to the first
following DATA statement. When no label is specified, the pointer is restored to the first constant
of the first DATA statement in the program.

Examples

The data in statement 10 is read in statement 20 and printed in statement 30:

18 DATA 3,5,7
28 READ A,B,C
30 PRINT A »B,C
>RUN
3 5 7

Note the use of RESTORE in this example. It permits the second READ to read the same data
into a second set of variables:

5 DIM A$(31,B$13)
18 DATA 3,5,7
28 READ A,B,C
38 READ AS%,BS
40 DATA “ABC","DEF™
58 RESTORE
68 READ D,E,F
70 PRINT A$+BS,A3B3C3 D3sESF
>RUN
ABCDEF 3 5 7 3 5 7

2-40

In the following examples, the data from three DATA statements is read into an 8-element array
variable and a simple variable. The same data is then restored and read into three simple variables.

19
20
30
40

50

DATA 3,5,7

DATA 9,11,13

DATA 15,17,19

READ (FOR I=1 TO 8,Cl1}),D

PRINT (FOR I=z1 TO 8,C(11),D
5 7
15 17

DATA 3,5,7

DATA 9,11,13

DATA 15,17,19
READ (FOR I=1 TO 8,C(11),D

PRINT (FOR I=1 TO 8,Cl11),D
RESTORE

READ A

RESTORE 29

READ B

RESTORE 39

READ C

PRINT A,B,C
5 7
15 17
S 15

2-41

9 1
15
9 1
19

INPUT Statement

The INPUT statement allows the user to input data to his program from the terminal, INPUT has
options that allow the user to save excess input and to print prompting strings before input. FOR
loops may be included in the item list associated with INPUT.

Form

INPUT
INPUT item list

The items in the item list may be variables, string constants, or FOR loops. Items are separated by
commas. FOR loops have the form:

(FOR statement, item list)

where the item list contains variables or FOR loops separated by commas.

A colon (:) may precede or follow the INPUT item list. When a colon follows the list, excess input
is saved in a buffer; when a colon precedes the list, input is assigned from the buffer before it is
requested from the user at the terminal,

An INPUT statement with no item list clears the input buffer; INPUT followed only by a colon
fills the buffer.

Explanation

When an INPUT statement is executed, a question mark (?) is printed at the terminal and the
program waits for the user to type his input. The input is in the form of constants separated by
commas, If an insufficient number of constants is typed, the program responds with two question
marks (??). This requests the user to input more constants. The type of data item, numeric or
string, must match the type of variable it is destined for.

Like the READ and PRINT statements, the INPUT statement can include any number of FOR

loops. Each time a FOR statement is executed, the user inputs a constant to match the variables
in the item list associated with the FOR statement.

Numeric Constants. Numeric constants always begin with the first non-blank character preceding
the comma or the end of the line.

2-42

String Constants. A string may be unquoted, in which case it begins with the first non-blank
character and ends with the last non-blank character in the line. It may not contain quotation
marks. A string may also be quoted, in which case it is delimited on each side by quotes and is
followed either by a comma or the end of the line.

The INPUT statement can be requested to print a string constant instead of a question mark by
placing the string constant immediately before a variable. When the value for the variable is needed,
the string is printed instead of the usual question mark. Any number of these request strings can be
included in the variable list.

Examples

16 DIM C$i(25)

20 INPUT A,B,CS

30 X=A*B*x*2

43 PRINT C$s3X
>RUN
72,5,"X=A TIMES B SQUARED, Xx="
XzA TIMES B SQUARED, X= 50

19 INPUT "INPUT VALUE OF RADIUS *,R
20 X=3 .14%R*%*2
38 PRINT "AREA OF X =",X

>RUN
INPUT VALUE OF RADIUS 25
AREA OF X = 1962.5

Note that a series of strings on one line separated by commas will be recognized as a single string
constant unless each (except the last) is enclosed in quotes. See the following example:

10 DIM Ag[10],Bs(10),Csf10]
20 INPUT "THRFFE NAMFS?",As,Rs,Cs
30 PRINT A$,BS,CS
>RUN
THREE NAMFES?PAUT.,PETE,DTX
??2Y"MARY ", "JOHN"
PAUL,PETE, MARY JOHN

>RUN
THREE NAMES?PAUL
??PETE
??DIX
PAUL PETE DIX

>KIN

THREFE NAMFS?"PAUL","FPETE",DIX
PAUL PETE DTX

AUG 1978 2-43

This example illustrates the various prompts for input:

1@ INPUT A,"NUMBER?",B,C
20 PRINT A,B,C
>RUN
215
NUMBER?63 .5
2?7
15 63.5 7

2-43a

If all input values are entered at one time, only the first prompt is used:

18 INPUT A," NUMBER?",B,C
20 PRINT A,B,C
>RUN
215,63.5,7
15 63.5 7

The examples below illustrate FOR loops in the INPUT item list:

10 INPUT (FOR I=1 TO 5 STEP 2,Al1])
28 PRINT (FOR I=1 TQ 5 STEP 2,Af1))
>RUN
21,3,5
i 3 5

10 INPUT N, (FOR K=l TO N,"WHAT'S NEXT?",BLK])

20 PRINT (FOR XK=1 TO N,B[K))

>RUN

23
WHAT 'S NEXT?1
WHAT 'S NEXT?2
WHAT 'S NEXT?3

1 2 3

12 INPUT N,(FOR S1=1 TO N,(FOR I=1 TO N,CIS1,I)))
20 PRINT (FOR Si=1 TO N,(FOR I=z1 TO N,CISI,I1))
>RUN
72
7?21,2,3,4
| 2 3 4

2-44

The example below illustrates the use of the colon (:) to save input in the buffer, and to assign
input from the buffer. A colon following the input list saves the buffer; a colon preceding the
input list assigns values from the buffer.

In this example, four input values are placed in the buffer. However, following line 20 the buffer
is cleared because there is no colon after E. Another value must be input for F.

18 INPUT
28 INPUT
38 INPUT
483 PRINT
>RUN
71,2,3,4
279
1

I>ee ee D
-

By putting a colon after E as well as before it, the entire buffer is saved: .

10 INPUT
20 INPUT
38 INPUT
42 PRINT

> ee o0 D
- -
w N

L1]

>RUN
71,2,3,4
!

BUF FUNCTION

The BUF function is used in conjunction with INPUT to determine the type of the next data item
in the buffer. The form is:

BUF(X)

The parameter X has no meaning; any expression can replace X as the actual parameter. The results
of executing BUF(X) are:

Value of BUF(X) Next Item in Buffer

real
string
no data in buffer

integer

Sy O s N

long
7 complex
BUF (X) will not return the value 3.

2-45

Example

1@ INPUT

20 IF BUF(@)z4 THEN GOTO 190
30 IF BUF(@)=5 THEN DO

40 INPUT :A:

50 PRINT "INTEGER Az="3A
Y] GOTO 28

72 DOEND

80 1IF BUF(@)=1 THEN DO

99 INPUT :B:
180 PRINT "REAL NO ="3B
110 GOTO 28

126 DOEND

138 IF BUF(@)=2 THEN DO
140 INPUT :C$:

158 PRINT "STRING C="3C$
160 GOTO 29

170 DOEND

188 GOTO 20

198 PRINT "END OF BUFFER"™

When run, the user can input any number of constants and they will be kept in the input buffer,
This example assumes that no long or complex numbers will be input.

>RUN
21 3,"X"4576,35.2,66,6,75,"A","C"
REAL NO = 1,3

STRING C=X
INTEGER A= 576
REAL NO = 35.2
REAL NO = 66,6
INTEGER A= 75
STRING C:=A
STRING C=C

END OF BUFFER

2-46

ENTER Statement

The ENTER statement provides the program with more control over the input operation. The
statement can limit the amount of time allowed to input data from the input device (e.g., termlnal),

o +h tha Aat £+ 4+ +
provide the program with the actual input time, indicate whether the datais of ¢ rrect t

and return logical device number of the user’s terminal.

Form
There are three forms of the ENTER statement:

ENTER # terminal variable
ENTER time limit expression, actual time variable, input variable

ENTER # terminal variable, time limit expression, actual time variable, input variable

The terminal variable after # is used to return the logical device number of the terminal;
the time limit expression specifies the time allowed for input; the actual time variable
is assigned the actual time used; and the input variable is assigned the value typed in.

Explanation
The first form sets the terminal variable equal to the user’s terminal logical device number.

The time limit expression specifies the length of time, in seconds, that the user is allowed to enter
his input. The value must be in the range 1 to 255. If it is greater, 255 is used; if it is less, 1 is used.

The actual time variable is set to the approximate time, in seconds, that the user takes to respond.
If an improper input is typed, this value is negated. If the user fails to respond within the allotted
time, this variable is set to -256.

Only one value can be typed in for each ENTER statement and it is assigned to the input variable.
A string should not be entered enclosed in quotes, but it may contain quotes. A string that is too
long is truncated on the right,

The ENTER statement differs from the INPUT statement in that a “?”’ is not printed on the user
terminal and the system returns to the program if the user does not respond within a specified
time limit (there is no time limit on INPUT), Also, the program does not generate a linefeed after
the user types in a carriage return.

2-47

Examples

18 DIM C$(25]
20 ENTER #A4
30 PRINT "TERMINAL NO.=";4
48 PRINT "YOU HAVE | BINUTE TO TYPE 25 CHARACTERS FOR C§$"
52 ENTER 68,B,C$
68 PRINT LINCI)3"ACTUAL TIME:=";B
70 PRINT C$
80 PRINT LINC1)3" TYPE VALUE FOR C"
S@ ENTER #A,60,B,C
180 PRINT LINC1);"ACTUAL TIME:="3B
118 PRINT C
>RUN
TERMINAL NO.z 17
YOU HAVE | MINUTE TO TYPE 25 CHAR4CTERS FOR C$
EMBEDDED "QUOTES" 0.K.
ACTUAL TIME= 13.4]
EMBEDDED "QUOTES" 0.K.

TYPE VALUE FOR C
25.7E-8

ACTUAL TIME= 6,62
2.57800E-21

The system enters the logical terminal number in the variable A as a result of line 20; A can then be
referenced as in line 30. Since ENTER does not provide a prompt character, it is useful to print
some form of prompt particularly because there is a time limit on the input.

Note that the system does not provide a linefeed after input. It is therefore essential, if any output
is to be printed after the input line, to provide a linefeed (use LIN function) within the PRINT
statement. Without this linefeed, a subsequent output line overprints the input line.

A common use of ENTER is to test students:

18 PRINT "WHAT IS .25 TIMES 757"
20 ENTER 32,T,X
30 IF X=.25%75 THEN GOTO 72
40 PRINT LINC1),"SORRY,THE CORRECT ANSWER IS";.25%75
50 PRINT " TRY THE NEXT PROBLEM"
68 GOTO 80
72 PRINT LINC1)3"CORRECT,YOU ANSWERED IN"3;T;"SECONDS"
820 REM..THE NEXT PROBLEM COULD START HERE ,
>RUN
WHAT IS .25 TIMES 757
18.75
CORRECT,YOU ANSWERED IN 3.35 SECONDS

2-48

> BASIC

When a BASIC/3000 program is waiting for input at the terminal as a result of an INPUT or
ENTER statement, the user can interrupt input and request a new level of the BASIC/3000
Interpreter by typing > BASIC.

The computer returns a greater than sign (>) to prompt for other BASIC statements or commands.

The previous program is suspended until the user types EXIT. EXIT in this case returns control to
the INPUT or ENTER statement in the previous program. The computer types two question marks
(??) to signal that it is waiting for further input.

Example

10 PRINT "WHAT IS THE SQUARE ROOT OF 947"
20 INPUT I

>RUN

WHAT IS THE SQUARE ROOT OF 9547

?7>BASIC

BASIC 021.0

>1@ PRINT SQR(S54)

>RUN

9.69536

>EXIT

229.69536

>

The user responds to the INPUT prompt signal with > BASIC. He can then enter and run another
program. EXIT returns control to the original program. He now enters the value he got as a result
of the program run in > BASIC.

When BASIC/3000 is entered with > BASIC, it cannot be entered again in the same way. That is,
there is no nesting of this feature.

249

Commands

So far we have used a set of commands (LIST, RUN, SCRATCH) for simple program manipulation.
Both LIST and RUN have parameters and functions other than were illustrated. The full capability
of commands used to run a program, to edit a program, and to save a program in the library are
described here. The commands are:

RUN

The Editing Commands:
LIST
SCRATCH
DELETE
RENUMBER
LENGTH

Library Commands:
NAME
SAVE
GET
APPEND
PURGE
CATALOG

Commands in general are described in Section I. It should be recalled here that commands do not
have labels; they are entered directly after the > prompt character and are executed immediately.
Unlike statements, commands may not contain embedded blanks except between parameters.
Some commands may be abbreviated.

Certain conventions are used in the command description:

UPPER-CASE Key words that must be spelled correctly
lower-case Words defined by the user

[1] Enclose optional items

{ } Enclose required items

| Separates alternatives, one of which must be chosen

Indicate the preceding item may be repeated

2-50

In the command descriptions, certain keywords are used:

programname a BASIC/3000 program file
filename anon-BASIC/3000 file
asciifile an MPE/3000 ASCII file

Key word parameters may be in any order.

RUN

The RUN command executes a BASIC/3000 program; the form is

RUN [programname] [,label] [,OUT=asciifile] [[NOWARN] [,FREQ] [[NOECHO] [,MR]

If programname is specified, the named program is retrieved from the user’s library and made the
current program. Any program previously in the user’s work area is scratched. The current program
then is executed. Any traces and breakpoints are deleted. (Traces and breakpoints are described in
Section VII, Debugging.)

If label is specified, execution starts at the first executable statement at or after the label number.
The starting statement must not be within a function definition. If the label specifies a DEF state-
ment, execution begins at the first executable statement following the function definition.
OUT=asciifile diverts all printed output and trace information to the specified ASCII file,
NOWARN suppresses warning messages.

FREQ causes a table to be printed following program execution that summarizes the usage of all
statements in all programs that are part of the run. There may be more than one program in a run

when segmentation is used (see Section X, Segmentation),

NOECHO suppresses printing of program input when the input and list files are not on the same
device.

MR allows the execution of a program that locks multiple files, provided that the user has MR capa-
bility (see Section VIII, Dynamic Locking).

APR 1978 2-51

Examples of RUN

The program below is the current program:

S8
120
110
120

DATA 3,5,7
DATA 9,11,13

DATA 15,17,19

READ (FOR I=1 TO 8,C{I)),D
PRINT (FOR I=1 TO 8,C(11),D
RESTORE

READ A

RESTOGRE 29

READ B

RESTORE 3@

READ C

PRINT A,B,C

First the entire program is run, then it is run starting at line 60:

>RUN
3
13
3

>RUN
3

5 7 S
15 17 1S
9 15

y 60
S 15

2-52

11

Next the same program is run with a frequency table:

>RUN,FREQ

3 5 7

13 15 17
3 9 15

FREQUENCY TABLE

TOTAL STATEMENTS = 12
TOTAL TIME = .297 SECONDS

FREQUENCY

EXECUTION TIME

LABEL COUNT PCT AVE TOTAL PCT

10 l 8 001 « 0081
20) 8 000 . 008
30 l 8 081 001
40 1 8 022 22
50 l 8 160 . 160
60 l 8 081 081
790 l 8 0082 . 002
80 1 8 .000 009
S8 1 8 « 002 .002
1290 l 8 001 201
110 l 8 .002 « 002
120 1 8 . 000 0020
SYSTEM OVERHEAD « 105

2-53

(¥
VeS8~ suyoms

w

11

Editing Commands

The editing commands always affect the current program, that is, the program that is currently
being entered at the terminal.

LIST
The LIST command lists all or part of the current program; the form is

LIST [first [- last]] [, OUT=asciifile] [, RECSIZE=number] [[NONAME]

where first and last specify the range of statements to be listed, and asciifile specifies the ASCII file
to which the list is diverted. If RECSIZE is specified, number specifies the number of characters
per record for the list file, If NONAME is specified, the program name is not listed; this is useful
when listing programs to be read back with the XEQ command. The default parameters are the
normal list file and a record size of 72 characters per record. If neither first nor last is specified, the
entire program is listed. If only first is specified, just that statement is listed.

Examples

>LIST

The entire current program is listed at the terminal.

>LIST 1-108,0UT=FASTFILE,RECSIZE=130

Statements 1 through 100 of the current program are listed on the file FASTFILE with a record
size of 130.

Note that a listing can be stopped by pressing the CTRL Y key. The user is returned to BASIC
control.

2-54

SCRATCH

The SCRATCH command deletes the entire current program and its name; the form is
SCRATCH | SCR

SCRATCH also clears traces and breakpoints. (Traces and breakpoints are described in Section VII,
Debugging).

Example

>SCR

The current program is deleted, and a new current program can be entered in the user’s work area.

DELETE

The DELETE command deletes one or more specified statements; the form is
|DELETE | DEL } first [- last] [, first [- last 1] ...

where first and last are statement labels; the statements referenced by the parameters are deleted
from the program. Each first-last pair specifies a range of statements which are to be deleted. Ifa
first is given without a last, only the one statement is deleted.

Example

>DEL 45,75,400-708

Statements 45, 75, and all statements from 400 through 700 inclusive are deleted from the user’s
current program.

2-55

RENUMBER

The RENUMBER command allows the user to renumber any of the statements in the current
program; the form is

{RENUM IRENUMBER} [newfirst [, delta [, oldfirst [- oldlast 1111

oldfirst and oldlast specify the range of original statements to be renumbered (defaults are
1—15999). If only oldfirst is specified, the default for oldlast is 15999. The first of these statements
is assigned the number newfirst (default is 10) and each of the remainder is assigned a statement
number delta greater than its predecessor (default for delta is 10). Any statement in the program
which references a renumbered statement is changed as required for consistency.

Examples

>RENUMBER

The statements in the current program are renumbered in increments of 10 starting with statement
number 10.

>RENUM 5,5,1-898

The old statement numbers 1 through 890 are renumbered starting with 5 and increasing by 5.

LENGTH

The LENGTH command reports the size of the current program; the form is
LENGTH | LEN

The length of the current program (in 16-bit words) is printed

Example

>LENGTH

The length of the current program is printed.
2.56 AUG 1978

T Examples Using Editing Commands

After the user enters text at a terminal, mistakes can be corrected by pressing the CNTL H (or Hc)
key or the backspace key.

>}@ INPUG\T A,B,C,D,E

>20 REM..INPUT 5 VALUES

>30 LET S=(A@\+B+C+D+E) 2\/5

>48 REM,.,.S=AVERAGE OF 5 INPUT VALUES
>5@0 PRINT S

>LIST
16 INPUT A,B,C,D,E
20 REM..INPUT 5 VALUES
30 LET S=(A+B+C+D+E) /5
42 REM..S=AVERAGE OF 5 INPUT VALUES
58 PRINT S

LENGTH gives the length in computer words:

ENGTH
53 WORDS.

The remark lines are deleted and the program is listed:

P

>DELETE 20,40

>LIST
18 INPUT A,B,C,D,E
38 LET Sz (A+B+C+D+E) /5
52 PRINT S

APR 1978 2-57

Next, the program is renumbered and listed again:

>RENUMBER

>LIST
18 INPUT A,B,C,D,E
20 LET S=(A+B+C+D+E) /5
38 PRINT S

The program is scratched. When LIST is now specified, there is no current program; the computer
returns a “>"’ to prompt for further entries:

>SCRATCH
>L1ST

>

2-58

Library Commands

When a current program is complete, and if it is to be used again, it should be saved in the user’s
library. A copy of the current program identified by a name is kept in the library when the program
is saved. The current program is not affected; it remains the current program until log off, or until
it is scratched with the SCRATCH command.

When a program is saved, it must be given a name either with the NAME or SAVE command. The
program name is used to get, to append, or to purge a program in the user’s group library. The
name must be unique among names in a particular user’s group library, but it may be duplicated

in other groups. A catalog of the programs and files contained in the user’s library may be requested
with the CATALOG command.

NAME

The NAME command assigns a name to the current program; the form is
NAME programname

The programname specified is assigned to the current program. The programname can be any com-
bination of eight alphabetic and numeric characters, beginning with an alphabetic character.

Example

>NAME PROGX

The current program is assigned the name PROGX.

SAVE

The SAVE command stores a copy of the current program in the user’s library; the form is

SAVE [programname] [!] [FAST] [[RUNONLY] [[MR]

If programname is specified, that name is given to the saved copy, but not to the current program.
If programname is omitted, the name of the current program is assumed; in this case, the program
must have been named before it can be saved. If there is no file with the same name in the user’s
library, a new file is created and a copy of the current program is stored in it. If a file with the same
name already exists in the library, the SAVE command is rejected unless the exclamation mark is
specified, in which case the original file is purged and a new file created.

APR 1978 2-59

FAST causes the program to be saved in pseudo-compiled form so that it can be RUN more quickly.
It also ensures that the program is valid (matching FOR-NEXT pairs, etc.).

A program saved for RUNONLY is assumed to be free of errors and ready for execution. When a
RUNONLY program is brought into the user’s work area with GET, certain commands are illegal

until a SCRATCH or another GET. For instance, a RUNONLY program cannot be listed or modified.

The only commands legal when a RUNONLY program is current are:

ABORT
CATALOG
CREATE
DUMP
EXIT

GET

KEY
PURGE
RESUME or GO
RUN
SCRATCH
SPOOL
SYSTEM
TAPE

XEQ

MR saves a program with MR status, if the user has MR capability (see Section VIII, Dynamic
Locking). Otherwise, the following message appears on the terminal:

COMMAND EXCEEDS USER CAPABILITY

Examples

>SAVE PROGX

The name PROGX is assigned to the copy of the current program that is saved in the user’s library.
>NAME PROGX
>SAVE

The current program is given the name PROGX, and then a copy is saved in the user’s library.

2-60 APR 1978

>SAVE PROGX!,FAST,RUNONLY

A copy of the current program is assigned the name PROGX and stored in the user’s library; any
other program with the name PROGX is purged from the library. The program is saved in pseudo-

compiled form and, if retrieved as the current program, only commands legal with RUNONLY can
be used.

GET

The GET command loads a specified BASIC/3000 program into the user’s working space; the
form is

GET programname
where programname is the name of a program to replace the current program. GET deletes all

traces and breakpoints,

Example

>GET SEARCH

SEARCH is a program saved in the user’s library. It is now also available in the user’s work area
replacing any previous program in that area.

PURGE

The PURGE command removes a file or program from the user’s library; the form is
PURGE {basicfile | programname | filename}

The file or program specified is deleted from the user’s library; it is not recoverable once it has
been purged.

Example

>PURGE PROGX

PROGX is a file or program in the user’s library. It is no longer available to the user and its name
may be assigned to another file or program.

2-61

APPEND

The APPEND command appends a specified program to the user’s current program; the form is
APPEND programname

The program specified is appended to the end of the current program. The last sequence number
of the current program must be smaller than the first sequence number of the appended program.
Programs which have been saved in pseudo-compiled form (see SAVE command) and RUNONLY
programs cannot be appended.

Example

>APPEND PROGX

PROGX is a program saved in the user’s library. It is appended to the program currently in the
user’s work area,

CATALOG

The CATALOG command provides a list of programs or files specified by the user. The list includes
the program or file name, the type, the number of logical records, and if desired, the record width.

The form is:

{CAT | CATALOG) [fileset] [,ALL] [,RECSIZE] [,0UT=asciifile] [,START=filename]

where:

fileset one or more files or programs referenced by file name,
group name, and/or account name, When fileset is omitted,
all the files in the user’s log-on group are listed. (See the
next page for a full description of fileset.)

ALL all ASCII and Binary files are included in the list; if ALL is
omitted, only BASIC files and programs are listed.

RECSIZE requests the record width for each file. If RECSIZE is

omitted, record width is not listed.

2-62

OUT=asciifile

START=filename

the file listing is diverted to the specified ASCII file; if OUT
is omitted, the list is on the list device (e.g., the terminal).

the listing starts with the specified file name.

For each file listed, the file name, the type (BF for BASIC file, SP for saved program, FP for fast
saved program, A for ASCII, B for Binary) and the number of records in the file are listed. The
record width is listed if RECSIZE is specified; the width is in bytes for ASCII files, in words
otherwise. The listing is printed in as many columns as will fit across the width of the list device.

Output can be stopped with CTRL Y, as with the LIST command.

The fileset parameter has

QiaaT UL 2IaS

1 :iT 21ICOT U

e user to request descriptions of one file alone,

or various sets of files, The fllename fleld 1ndlcates a specific file or all files within the units
designated by the other fields. The group field denotes the group to which the files belong. The
account field denotes the account to which the group belongs, or it may specify ail accounts in
the system. To specify all files, groups, or accounts, the user enters the character @ in the appro-
priate field. The three fields are separated by periods.

The table below shows the possible combination of entries in fileset:

File Field Group Field Account Field Entry Example Meaning

filename groupname accountname FILE.GROUP.ACCT The file named, in the
group and account
designated.

filename groupname FILE.GROUP The file named, in the
group designated under
the log-on account.

filename FILE The file name, under
the log-on group.

@ groupname accountname @,GROUP.ACCT All files in the group
named, under the
designated account.

@ groupname @,GROUP All files in the group
named, under the
log-on account.

@ @ All files in the log-on
group. This is the
default case.

@ @ accountname @.@.ACCT All files in all groups
under the account named.

@ @ @.0 All files in all groups under
the log-on account.

@ @ @ 0.0.0 All files in the system.

@ means all

2-63

Examples Using Library Commands

A program is input, named, and saved in the user’s library. It is then scratched as the current program:

>lﬂﬁ INPUT A,B,C,D,E

>120 LET S=(A+B+C+D+E) /5

>130 PRINT S

>NAME AVERAGE

>SAVE

>SCRATCH -

A second program is entered, named, and saved. The first program is then appended to this program
to make a third program. It too is named and saved:

>I@ INPUT R

»>20 P=3.14

>33 AzP*xR%*x%x2
>4@3 PRINT A
>NAME AREA
>SAVE

>APPEND AVERAGE
>SAVE CALC

Any of these programs may now be brought back as the current program with GET. To illustrate,
each is retrieved and then listed:

>GET AVERAGE
>LIST
AVERAGE
180 INPUT A,B,C,D,E
120 LET S=(A+B+C+D+E) /5
130 PRINT S
>GET AREA
>LIST
AREA
190 INPUT R
20 P=3.14
30 AzP*Rx%x2
40 PRINT A
>GET CALC
>LIST
CALC
12 INPUT R
28 P=3.,.,14
308 AzPkR%x%2
49 PRINT A
196 INPUT A,B,C,D,E
120 LET S=(A+B+C+D+E) /5
138 PRINT S

2-64

To determine whether a particular program is in the user’s library, he can type CATALOG followed

C
| AL I : T +hava ava nat too many fileg in the etrrent loo-o 1
Oy uri€ prograim naimnie. i1 nere are not 100 many 1ues in the current lug-un group, he can SImply

type CATALOG to get a list of all the files currently saved.

In this example, the user requests a catalog of the program CALC. He then types RUN CALC and
the program will be retrieved from the library and run:

>CATALOG CALC

ACCOUNT=LANG GROUP=BASIC

NAME RECORDS NAME RECORDS NAME RECORDS
CALC SP 2
>

>RUN CALC
CALC
768
11304
234,56,43,61,54,73
45,6

If there is no further need for the saved programs, each may be purged as follows:

>PURGE CALC
>PURGE AREA
>PURGE AVERAGE

The program CALC remains the current program as a result of the RUN CALC command until it is
scratched or is replaced by another program in the user’s library, or until the user exits from
BASIC.

Saved programs remain in the library after log-off and can only be removed with the PURGE
command.

2-65

