SECTION X
Segmentation

Because the maximum size of a BASIC/3000 program is necessarily limited by memory resources,
BASIC/3000 provides language facilities for segmenting programs into units that can call each
other. Each unit or subprogram must be saved in the user’s library; from there it may be called by
the currently executing program into the user’s work area.

Two statements are used for interprogram transfer: INVOKE and CHAIN; and one statement,
COM, allows variables to be used in common by several programs.

10-1

The CHAIN statement terminate:

s the cu
optionally starting at a specified statement number.

Form
The forms of CHAIN are:

CHAIN string expression

CHAIN string expression,integer expression

The string expression, when evaluated, is the name of a BASIC/3000 program that is in the user’s
library. This may be a fully qualified file name (see Section VIII, Files). When evaluated, the
optional integer expression is a label in the called program. If present, execution begins at the first
executable statement at or after the label; the exact label need not be present in the called pro-
gram. If omitted, execution begins at the first executable statement in the called program.

Explanation

CHAIN calls the program identified by the string expression, and it replaces the current program.
When the program called by CHAIN finishes execution, it terminates and does not automatically
return to the calling program. The called program may call another program, including the orig-

inal calling program, with another CHAIN statement or an INVOKE statement.

Only variables declared in a COM statement are saved during a CHAIN operation. All variables and

arrays of the current program that were not declared in COM are lost when the new program begins
execution, and all files opened in the current program are closed.

10-2

Examples

MAIN
13 REM..PROGRAM MAIN
20 LET X=2008,A=X**3
33 PRINT "Az="3A
40 PRINT "LEAVE MAIN AND ENTER SUBA AT LINE 32"
58 CHAIN "SUBA" ,39
60 REM..THIS STATEZMENT 1S NEVER EXECUTED

SUBA
1@ REM..PROGRAM SUBA
20 PRINT " THIS STATEMENT IS WOT EXECUTED"
30 PRINT “"ENTER SUBA - LINE 32"
49 LET B=125,C:=B*%*2
52 PRINT "C="3C
628 PRINT "aND OF SUBA - TERMINATE HERE"
72 END
>RUN MAIN
MAIN
Az 8,00008E+26
LEAVE MAIN AND ENTER SUBa AT LINE 32
ENTER SUBA - LINE 32
C= 15625
END OF SUBA - TERMINATE HERE

The main program, MAIN, calls program SUBA with a CHAIN command in line 50. Execution of
SUBA begins in line 30, and execution terminates with the last line of SUBA. None of the variable
values from MAIN are saved following execution of CHAIN.

10-3

INVOKE Statement

The INVOKE statement is similar to the CHAIN statement, except that the calling program is sus-
pended rather than terminated and resumes execution when the program called by INVOKE ter-
minates. The called program can be explicitly terminated with an END statement, otherwise it is
implicitly terminated by the end of the program. In both cases, control returns to the suspended
program that performed the INVOKE. If the called program is terminated by a STOP statement
or a terminal error, the entire run is terminated including any suspended programs.

Form
The forms of INVOKE are:

INVOKE string expression

INVOKE string expression,integer expression

The string expression evaluates to the name of a BASIC/3000 program in the user’s library. It may
be a fully qualified file name. The integer expression evaluates to the label of a starting statement.

Explanation

The statements and variables of the current program are saved in a temporary file created by
BASIC/3000 so that execution of the program can be continued at a later time. Variables declared
in COM statements are passed to the program called by INVOKE. Files opened in the current pro-
gram are not closed by INVOKE.

Execution of the new program begins at the first executable statement in the program or, if speci-
fied, at or after the label. The exact label need not be present in the called program.

When an implicit or explicit END statement in the called program is executed, control returns to
the suspended program at the point immediately following the INVOKE statement. A STOP state-
ment in the called program will, however, terminate the entire run including any suspended pro-
grams.

INVOKE operations can be nested; that is, a program that has been called by INVOKE can itself
invoke another program including a recursive INVOKE of itself.

10-4

Examples

MATNX
18 REM.,.PROGRAM MAINX
20 LET A=25
32 INVOKE "suBYy”
49 PRINT "CONTROL RETURNS TO MAINX"
58 PRINT "C=A%x10="3A%x1D
SUBY
1@ REM..PROGRAM SUBY
20 PRINT " EZXECUTION OF SUBY BEGINS™
358 PRINT "B:="38%%-3
42 PRINT ™END OF SUBY - RETURN TO MAINX"
5@ END
>RUN MAINX
MAINX
EXECUTION OF SUBY BEGINS
Bz 1,95313E~-23
END OF SUBY - RETURN TO MAINX
CONTROL RETURNS TO MAIWNX
Cz=A%x12= 250

MAINX uses an INVOKE command in line 30 to call for execution of SUBY. Execution begins with
the first executable statement in SUBY. When SUBY terminates, control returns to line 40 of
MAINX. The value of the variable A has been saved during execution of SUBY.

EXAMPLE USING CHAIN AND INVOKE

The example below has four programs: A, B, C, and D. All four programs have been saved in the
user’s library. The command RUN A brings A into the user’s work area as the current program.
With each successive CHAIN or INVOKE, a new program replaces the previous program in the work
area; in this case A is the final as well as the first program in the work area.

When D terminates it returns to C, and when C terminates it returns to A because C was chained to
by B which was invoked by A.

10-5

18 REM..PROGRAM A

22 PRINT "ENTER PROGRAM A"

38 INVOKE "B"

40 PRINT "BACK IN PROGRAM A - TERMINATE"

B
12 REM..,PROGRAM B
28 PRINT "ENTER PROGRAM B*®
38 CHAIN "C",30
40 REM..CONTROL SHOULD NEVER RETURN TO THIS POQINT
4] REM..DUE TO CHAIN IN LINE 32
50 PRINT " NOT TO BE EXECUTED - B~
c
12 REM..,PROGRAM C - EXECUTION STARTS IN LINE 3@
20 PRINT "NOT TQ BE EXECUTED - C"
3@ PRINT "ENTER PROGRAM C - LINE 38"
43 INVOKE "D",25
5@ PRINT "BACK IN C - RETURN TO A"
68 REM..END IN LINE 78 WILL CAUSE RETURN TO PROGRAM A
61 REM..BECAUSE PROGRAM B WAS INVOKED BY PROGRAM A
62 REM..NOTE THAT THE "END" IS UNNECESSARY
70 END
D

5 REM..PROGRAM D - EXECUTION STARTS IN LINE 25
15 PRINT "NOT TO BE EXECUTED - D"
25 PRINT “ENTER PROGRAM D - LINE 25"
35 PRINT "RETURN TO PROGRAM C"™
45 REM.. JMPLICIT END WILL CAUSE RETURN TO PROGRAM C
47 REM NOTE THAT EXPLICIT "END"™ WOULD DO THE SAME
sRUN A
A
ENTER PROGRAM A
ENTER PROGRAM B
ENTER PROGRAM C - LINE 30
ENTER PROGRAM D - LINE 25
RETURN TO PROGRAM C
BACK IN C - RETURN TO A
BACK IN PROGRAM A - TERMINATE

10-6

Files and Segmentation

Within a program, a file is referenced by its file number as determined by its position in the FILES
statement (see Section VIII). When programs call one another with CHAIN or INVOKE, it is pos-
sible to reference files that were declared with FILES statements in other programs.

BASIC/3000 maintains an internal file numbering scheme that assigns an internal file number to
every file declared in a FILES statement. For main programs, these numbers are the same as the
file numbers to which the user refers. Files declared in a program called by INVOKE are assigned
internal file numbers beginning with a value one greater than the last internal file number. Files
declared in a program called by CHAIN are assigned internal file numbers beginning with the same
number as the files in the calling program. Whether the program is a main program, is called by
INVOKE, or is called by CHAIN, the local file numbers used to refer to files within each program
will begin with 1.

When a program calls another program with INVOKE, all the files in the calling program remain
open; when a program calls with CHAIN, the files in the calling program are closed.

To illustrate:

Ml
18 REM MAIN PROGRAM Ml

2¢ FILES A,B,C
36 INVOKE "mMm2"

M2
12 REM SUBPROGRAM M
22 FILES D,E,F
33 CHAIN "M3"

3
18 REM SUBPROGRAMN M3
20 FILES G,H

The internal and local file numbers for this group of programs is:

Internal File Numbers Local File Numbers
A=1 M1
B=2 A=1
CcC=3 B=2

C=3

D=4 M2
E=5 D=1
F=6 E=2
F=3

G=4 M3
H=5 G=1
(6 is unassigned) H=2

By using the #integer file designator in a FILES statement, a program may reference files declared
in another program that invoked it. The value of the integer is the internal file number of a pre-
viously declared file; the position of the designator in the FILES statement is used to assign the
local file number.

Examples

Ml
18 FILES A,B,C
20 PRINT #1,13"FILE A"
50 PRINT #2,13"FILE B"
49 PRINT #3,13"FILE C"
50 INVOKE "m2”

M2
18 FILES D,E,F,#3
20 DIM AS(S)
38 PRINT #1,13"FILE D"
42 PRINT #2,13"FILE E”
58 PRINT #3,13"FILE F"
60 READ #4,13A%
70 PRINT AS
80 CHAIN "M3"

M3
12 FILES G,H,#1,#2
28 DIM AS(6),BS(6]
38 PRINT #1,13"FILE G"
40 PRINT #2,13"FILE H"
50 READ #3,13A%
60 READ #4,13B%
78 PRINT AS$,B$%

>RUN M!

Ml

FILE C

FILE A FILE B

Within M2, reference to local file #4 is the same as a reference to internal file number 3 (file C).
However, the statement FILES D,E,F,#3 is not the same as the statement FILES D,E,F,C. This
latter statement, if specified, would have treated file C as a logically different file from file C in

M1; the file would have been reopened with new buffers and access restrictions. By using #3, there
is only one logical file C and any accessing affects that file, and the file is not reopened. In the

same way, the statement FILES G,H,#1,#2 in M3 differs from a possible statement FILES G,H,A,B.

10-8

COM Statement

The COM statement is used to pass data values between segmented programs. Variables specified
in a COM statement are placed in a common area so that values assigned to these variables in one
program will be retained when transferring to another program with CHAIN or INVOKE. This
area is known as a COM block. There may be more than one COM block, and it may or may not
have an identifying label.

COM statements must precede all DIM, Type, or DEF statements in a program. All typing and
dimensioning of variables is done within the COM statement, and any variables that appear in a
COM statement must not also appear in a type or DIM statement in the same program.

BASIC/3000 permits ten COM blocks for each run, one unlabeled and nine labeled uniquely with
the digits 1 through 9.

Form
The forms of the COM statement are:

COM com item list
COM(nonzero digit)com item list

The com item list consists of a list of variable declarations. Simple variables are indicated by the
variable name; arrays are indicated by the array name and a bounds indicator. The bounds indi-
cator is equivalent to the dimension specification used in a DIM statement if the block is being
created; it indicates only the number of dimensions if the block has been created and is currently
active. The number of dimensions are specified with (*) or (*,*).

The type of items in the com item list is assumed to be real unless the variable name contains a $ to
indicate a string variable, or the variable is preceded by a type specifier (INTEGER, LONG, COM-
PLEX, or REAL). The type specifier assigns that type to all succeeding variables until the end of
the list or the next type specifier or string variable.

The optional block indicator is specified as a nonzero digit between 1 and 9. This assigns a label to
a block being created, or specifies an existing labeled block.

Explanation

Programs execute in BASIC/3000 on a dynamic level basis. The original program run with the RUN
command starts at level 1. When a CHAIN is executed, the new program executes also at level 1
since the old program terminates. However, when an INVOKE is executed, the new program exe-
cutes at level n+1 where n is the level of the invoking program. When control returns to the invok-
ing program, the level is reduced to n.

10-9

COM blocks become active whenever a program declares a COM block that is not currently existing
or active. COM blocks created at level n are active until the dynamic level drops to n-1 or the run
terminates.

If a COM statement references an inactive COM block, then numeric bounds for the arrays and
strings are specified as in a DIM statement. If, however, a COM statement references an active
block, then it need only indicate the number of dimensions. For a one-dimensional array or a
string variable, the variable name is followed by (*); for a two-dimensional array or a string array,
the variable name is followed by (*,*). The (*) can be omitted for simple string variables and will
be assumed. Numeric bounds may be specified for an active COM block, but in this case they must
be identical to the original COM statement bounds.

CORRESPONDENCE RULES. All variables in COM statements that reference an active COM block
must match exactly in type, number of dimensions, and order within the COM statement. Also, if
dimension size is specified instead of the *, these must match exactly. The names of corresponding
variables need not be the same since equivalence is based on the order of appearance of the vari-
ables in the COM statements. A COM statement defining an active block must contain the same
number of elements as the COM statement that created the block. More than one COM statement
in a program can define the same block if the statements are contiguous.

The order of elements in a COM statement, or in more than one contiguous COM statement, im-
plies the order of the variables in the COM block.

The rules governing correspondence between COM statements are checked when a CHAIN or IN-
VOKE statement is executed. If any of these conditions is not met, a terminal error occurs.

Examples

Program A1l chains to program B1 which in turn chains to program C1:

Al
16 com B,B%(5),C,INTEGER D,E[5]1,LONG F[5,2]
20 COM(5) Q,COMPLEX A,A%l2,2),P
30 LET B=10,B$="ABCDE",C=20.5,D=1
40 MAT READ E,F
50 DATA 1,2,3,4,5,1.01L11,5.,2L13,157L11,1,76L11,1.76L-9,1.53L11
78 LET G=1954.75,A=(12.3,4),P=3.14
83 MAT READ AS$
9@ DATA "AB™,"CD"
188 CHAIN "B1"™

10-10

Bi
10 COM T,C$(*),Q,INTEGER F,DI[*],LONG Fil*,x]
20 PRINT "START BI"”
328 PRINT T,C$,Q,F
40 MAT PRINT D3 Fl
58 CHAIN "CI"™

Cl
10 COM(5) A,COMPLEX B,C®l*,%*1,D
‘20 PRINT "START CI™
38 PRINT A,B,D
43 MAT PRINT C$

>RUN Al
Al
START BI
19 ABCDE 285 1
! 2 3 4 5
1.21000000000¢030L+11 5.200200002000020L+10
1.5720008000002300L+11 1.76000000000080001L.+11
1.760000000032000L-@9 1.5300000000003000L+11
1.575000000030300L~-34 1.570000002000000L+06
1.570020000000000L-05 1.7520000000360008L+10
START C1
1954.75 (1.23000E+31, 4.030000E+0202) 3.14
AB
CD

In this example, program Al creates the unlabeled COM block and also COM block 5. Program B1
references the unlabeled COM block and prints the data assigned to that block in A1l. Program C1
references COM block 5 and prints the data assigned to that block in Al. In both Bl and C1, the
number of dimensions of subscripted COM variables is indicated by (*) or (*,*).

10-11

Assume that program D1 chains to program E1:

h]
10 COM(9) Al3,51,INTEGER DI[6,6]
20 MAT A=ZER
30 MAT D=IDN
4@ CHAIN "&1"

El

12 COM(S) BI3,5),INTEGER P[6,6]
20 MAT PRINT B3LINCI),P;
>RUN DI
Dl
] @)) @
@ 2] @ @
] 2 a 2 @
l 0 2 () e 2
” 1 2 2 @ 2
8 %] l 2 2 2
2] 2 l 2 2
2) 0 2 l 2
2 @ 2 2 2 !

In this example, program D1 creates COM block 9, and program E1 references the data in block 9.
Actual numeric bounds are specified in the COM statement in E1. This is legal only if the bounds
are identical to the original bounds specification.

In the following example, execution of the four programs starts in W:

10-12

12 REM PROGRAM W
20 COM(3) BI(5)]
39 FOR I=1 TO 5

46 BlI)=1
50 NEXT 1

88 INVOKE X"

70 PRINT LIN(5)3"BACK IN W - B="
82 MAT PRINT B

98 CHAIN "Z"

18 REM.. PROGRAM X

20 COM(3) Alx])

30 COM(4) LONG C(3,2]

49 PRINT LINCS)$"IN X == A="3LINCI)
58 MAT PRINT A

68 FOR 1=} TO 5

10 AlI)=10%]

80 NEXT I

98 FOR I=1 TO 3

102 FOR J=Il TO 2

110 ClI,Jl=10%]+J
120 NEXT J
130 NEXT I

148 INVOKE "Y"

158 PRINT LIN(S5)3"BACK IN X == C="3LINCD)
168 MAT PRINT C

178 PRINT LINCI)3;"RETURN TO W"

12 REM.. PROGRAM Y

20 COM(C4) LONG Flx,x*x]

30 PRINT LIN(S)$™IN Y == Fz"3LINC])
40 MAT PRINT F

58 FOR I=1 T0 3

60 FOR J=1 TO 2

72 FII,J)z100%x1+18%J
80 NEXT J
99 NEXT I

198 PRINT LINC1);"RETURN TO X"

18 REM.. PROGRAM Z
28 COM(4) INTEGER I,J,K

38 PRINT LINC5)3™IN Z-- COMC4)="3LINCI)
40 IF UND(I) THEN PRINT " 1 UNDEFINED"
5@ ELSE PRINT " 1I:z"3I

68 IF UND(J) THEN PRINT " J UNDEFINED"
70 ELSE PRINT " Jz"3J

80 IF UND(K) THEN PRINT " K UNDEFINED"
98 ELSE PRINT " K="3K

186 PRINT " TERMINATE IN Z"

10-13

>RUN W
W

IN X -- A=
1 2
IN Y -- F=

1.10000000303027200L+01

2.1000200002902003L.+01

3.100000000000000L.+21

RETURN TO X

BACK IN X -- C=

1. 100200000020032L.+02

2.103000000000030L+02

3.102000000000000L+02

RETURN TO W

BACK IN W - B=
12 29

IN Z~- COMC(4)>=

1 UNDEFINED
J UNDEFINED
K UNDEFINED
TERMINATE IN 7

1.200200000000000L+01

2.2000000000300027L.+01

3.200000000000020L.+21

1.200000000020008L+022

2.200020000000020L.+22

3.200000000000020L+32

30 49

59

Note that Z can create a new COM block 4 since execution has dropped below the dynamic level 2

at which X created the first COM block 4.

10-14

The following three examples illustrate illegal COM usage:
Assume that program F1 invokes program G1:

Fl
1@ COMC1) ALID,121,LONG BI12,18)
20 MAT A=z=CON
3@ MAT B:=ZER
- 40 INVOKE "GI"

Gl
10 COMC1) LONG DI*,%),REAL E[*,%)
28 MAT PRINT D,E

>RUN F1

Fl

COM NOT SAME AS FIRST OCCURENCE IN GI

This is illegal because the corresponding variables in the two COM statements do not agree in type
and order. If the type references were interchanged in program G1, this would be a legal example.

Assume that program HH chains to program JJ:

HH
16 COM(T) A$(35,5),Bl2,5]
29 MAT B=IDN
3@ MAT READ AS
42 DATA "ABCDE"," FGHIJ"," LMNOP"
58 CHAIN "JJ"

JdJ
18 COMCT) QS(*],Dl*,x]
20 PRINT Q%
30 MAT PRINT D
>RUN HHK
HH
COM NOT SAME AS FIRST OCCURENCE IN JJ

This is illegal because Q$ is a simple string variable, whereas A$ is a string array.

10-15

Assume that program K1 invokes program P1:

Kl
12 COM(8) Xi*x,%]
20 INVOKE "PL1"”
30 MAT PRINT X

Pl
12 comM(g) Y(18,3)
20 MAT Y=ZER
>RUN K1
MISSING SUBSCRIPT SPECIFICATION IN FIRST OCCURENCE OF COM IN K1

This is illegal because the creator of a COM block must specify the actual physical size of arrays
and strings. If, however, P1 invoked K1 this would be a legal example.

10-16

